www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Wendepunkte bestimmen, wenn f'''(x)=0?
Wendepunkte bestimmen, wenn f'''(x)=0? < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wendepunkte bestimmen, wenn f'''(x)=0?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Do 19.08.2004
Autor: David_D

Hallo,

also, unsere Mathelehrerin hat uns vergangenes Jahr erklaert,
dass man, grob gesagt, Wendepunkte bestimmen kann, wenn f''(x)=0 und die 3. Ableitung ungleich Null ist.
Heute hat uns unser neuer Lehrer allerdings gesagt, dass eine Funktion des Types
[mm] f(x)=x^n [/mm]
auch ueber Wendepunkte verfuegt. Wobei wir mit unseren bisher erlernten Mitteln wohl noch nicht dazu in der Lage sein.
Deswegen habe ich im Internet danach gesucht, bin aber leider nicht fuendig geworden.
Daher hoffe ich nun, dass mir einer von euch helfen kann,
danke schon mal im Vorraus =)



Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Wendepunkte bestimmen, wenn f'''(x)=0?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Do 19.08.2004
Autor: Hanno

Hi David!
Schau' dir mal die Funktionen
[mm]f(x)=x^3[/mm]
[mm]f(x)=x^5[/mm]
...
[mm]f(x)=x^{2k+1}[/mm]
an.
Alle diese Funktionen haben im Nullpunkt einen Wendepunkt (sogar einen Sattelpunkt). Dennoch ist die dritte Ableitung in allen diesen Fällen gleich Null, d.h. wir können aus der Regel, die du wahrscheinlich kennst:
Wenn die zweite Ableitung [mm]f''(x_0)=0[/mm] und [mm]f'''(x_0)\not= 0[/mm], dann befindet sich an der Stelle [mm](x_0|f(x_0))[/mm] ein Wendepunkt.

Dies besagt, dass für [mm]f''(x_0)=0[/mm] die Tatsache, dass [mm]f'''(x_0)\not= 0[/mm] eine sogenannte hinreichende Bedingung für einen Wendepunkt ist. In Formeln ausgedrückt sei D die Tatsache, dass [mm]f'''(x_0)=0[/mm] und W die Tatsache, dass an der Stelle [mm](x_{0},f(x_0))[/mm] ein Wendepunkt vorliegt, so gilt (natürlich nur unter der Bedingung, dass [mm]f''(x_0)=0[/mm]):
[mm]D\Rightarrow W[/mm]
Daraus folgt allerdings noch lange nicht die Negierung, also, dass
[mm]\neg D\Rightarrow \neg W[/mm]
Soll heißen: nur weil die dritte Ableitung an der Stelle [mm]x_0[/mm] ungleich Null ist, folgt daraus noch nicht, dass kein Wendepunkt vorliegen kann.

(Beliebtes Beispiel: Wenn es regnet, ist die Straße nass. Wenn es nicht regnet, kann die Straße trotzdem nass sein. Aber: Wenn die Straße nicht nass ist, dann kann es auch nicht regnen).

Hilft dir das ein wenig?

Gruß,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de