www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "komplexe Zahlen" - Wer gewinnt hier denn?
Wer gewinnt hier denn? < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wer gewinnt hier denn?: Die Wurzel oder das Quadrat
Status: (Frage) beantwortet Status 
Datum: 21:00 Sa 23.01.2010
Autor: steem

Mir ist heute etwas aufgefallen was mich etwas verwundert hat. Und nun finde ich keinen Weg mehr dort herraus und brauche jemanden der mich rettet.

Also ich habe:

[mm] \wurzel{j^2} [/mm]

Nun ist ja [mm] j^2=-1 [/mm]

Fall 1) Wenn ich aber jetzt schnell genug die Wurzel ziehen würde, also bevor die hoch 2 ihre Wirkung entfalten kann, hätte ich ja nur j da stehen.

Fall 2) Wenn das Quadrat schneller ist als die Wurzel, hat die Wurzel das nachsehen, weil dann da steht : [mm] \wurzel{-1} [/mm]

Übersehe ich hier irgendeine Regel? Oder hab mich völlig verlaufen?
Für Rettung wäre ich sehr dankbar ;)


        
Bezug
Wer gewinnt hier denn?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Sa 23.01.2010
Autor: nooschi


> Mir ist heute etwas aufgefallen was mich etwas verwundert
> hat. Und nun finde ich keinen Weg mehr dort herraus und
> brauche jemanden der mich rettet.
>  
> Also ich habe:
>  
> [mm]\wurzel{j^2}[/mm]
>  
> Nun ist ja [mm]j^2=-1[/mm]
>
> Fall 1) Wenn ich aber jetzt schnell genug die Wurzel ziehen
> würde, also bevor die hoch 2 ihre Wirkung entfalten kann,
> hätte ich ja nur j da stehen.
>
> Fall 2) Wenn das Quadrat schneller ist als die Wurzel, hat
> die Wurzel das nachsehen, weil dann da steht : [mm]\wurzel{-1}[/mm]
>  

die Frage ist einfach, was denn nun [mm] \wurzel{-1} [/mm] ist. das ist eben gerade = i (oder wie du schreibst j). Somit hast du kein Problem mehr, weil du bei Fall 1 und Fall 2 auf das selbe Resultat kommst.



Bezug
                
Bezug
Wer gewinnt hier denn?: kleine Ergänzung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Sa 23.01.2010
Autor: student87

Die Antwort ist natürlich vollkommen richtig. Allgemein ergänzend vielleicht noch: Das was unter der Wurzel steht wird immer zuerst ausgerechnet. Wird evtl. noch etwas deutlicher wenn man das ganze umschreibt.
[mm] \wurzel{j^2} [/mm] kann man ja auch so schreiben: [mm] (j^2)^\bruch{1}{2}. [/mm] Da würde man ja zuerst die Klammern ausrechnen.

Bezug
        
Bezug
Wer gewinnt hier denn?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Sa 23.01.2010
Autor: Al-Chwarizmi


> Mir ist heute etwas aufgefallen was mich etwas verwundert
> hat. Und nun finde ich keinen Weg mehr dort heraus und
> brauche jemanden der mich rettet.
>  
> Also ich habe:
>  
> [mm]\wurzel{j^2}[/mm]
>  
> Nun ist ja [mm]j^2=-1[/mm]
>
> Fall 1) Wenn ich aber jetzt schnell genug die Wurzel ziehen
> würde, also bevor die hoch 2 ihre Wirkung entfalten kann,
> hätte ich ja nur j da stehen.
>
> Fall 2) Wenn das Quadrat schneller ist als die Wurzel, hat
> die Wurzel das nachsehen, weil dann da steht : [mm]\wurzel{-1}[/mm]
>  
> Übersehe ich hier irgendeine Regel? Oder hab mich völlig
> verlaufen?
> Für Rettung wäre ich sehr dankbar ;)



Hallo steem,

deine Beschreibung der Rechenoperationen "Quadrieren"
und "Wurzel ziehen", die darum wetteifern wer sich zuerst
auf einen Term stürzen darf, finde ich ja lustig ...

Aber es gibt da doch strikte Vortrittsregeln. Lautet der
Term  [mm] \sqrt{j^2} [/mm] , dann wird zuerst quadriert und dann
aus dem Zwischenergebnis die Wurzel gezogen (falls denn
die Wurzel überhaupt sinnvoll und insbesondere eindeutig
definiert ist).

Lautet der Term [mm] \sqrt{j}^{\ 2} [/mm] , so wird zuerst radiziert (sofern
möglich) und dann quadriert.

Wenn nun aber mit j die imaginäre Einheit gemeint ist,
ist in beiden Fällen das Ziehen der Wurzel keine
eindeutig bestimmte Rechenoperation, denn im Bereich
[mm] \IC [/mm] der komplexen Zahlen ist die Quadratwurzel nur
unter Vorbehalten eine sinnvolle Begriffsbildung.

Auch schon die Schreibweise  [mm] i=\sqrt{-1} [/mm]  bzw.  [mm] j=\sqrt{-1} [/mm]  
ist streng genommen unsinnig.


LG     Al-Chw.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de