www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Wert der Determinante
Wert der Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wert der Determinante: Idee
Status: (Frage) beantwortet Status 
Datum: 18:57 So 30.03.2014
Autor: Mexxchen

Aufgabe
Welchen Wert besitzt [mm] det(e^A) [/mm] = [mm] \pmat{ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16} [/mm]

Hallo,

kennt irgendjemand für diese Aufgabe einen Trick, wie man die Determinante schnell berechnen kann? Ich hab in meinem Skript dazu leider keine Formel oder ein Beispiel gefunden und bin deshalb ziemlich ratlos.

Danke und viele Grüße
Mexxchen

        
Bezug
Wert der Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 So 30.03.2014
Autor: Richie1401

Hi,

> Welchen Wert besitzt [mm]det(e^A)[/mm] = [mm]\pmat{ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16}[/mm]
>  
> Hallo,
>
> kennt irgendjemand für diese Aufgabe einen Trick, wie man
> die Determinante schnell berechnen kann?

Naja, bis jetzt ist ja noch nicht einmal so richtig klar, was zu berechnen ist.

Sollst du die Determinante von [mm] A:=\pmat{ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16} [/mm] berechnen?

Oder sollst du ´zuerst das Matrixexponential berechnen und davon die Determinante?
Also: Wenn [mm] A=\pmat{ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16}, [/mm] dann ist [mm] \det(e^A) [/mm] zu bestimmen.


Für den ersten Fall: Du könntest hier entwickelt, nach beliebiger Spalte oder Zeile.

Für den zweiten Fall: Es gilt [mm] \det\exp{A}=\exp(tr(A)) [/mm]

> Ich hab in meinem
> Skript dazu leider keine Formel oder ein Beispiel gefunden
> und bin deshalb ziemlich ratlos.
>
> Danke und viele Grüße
> Mexxchen


Bezug
                
Bezug
Wert der Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 So 30.03.2014
Autor: Mexxchen

Ich geh mal davon aus, dass ich letzteres machen muss. Die Spur der Determinante ist dann 1+6+11+16=34, oder? Dann wär ja mein Wert der Determinante det(e^34)?

Bezug
                        
Bezug
Wert der Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 So 30.03.2014
Autor: DieAcht

Hallo,


> Ich geh mal davon aus, dass ich letzteres machen muss. Die
> Spur der Determinante ist dann 1+6+11+16=34, oder?

Ja. [ok]

> Dann wär ja mein Wert der Determinante det(e^34)?  

Ja, wobei ich deine Argumentation hier nicht ganz nachvoll-
ziehen kann, denn es folgt direkt und das ohne Determinante:

      [mm] \det(e^{A})=e^{Spur(A)}=e^{34}. [/mm]


Gruß
DieAcht

Bezug
                                
Bezug
Wert der Determinante: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:09 So 30.03.2014
Autor: Mexxchen

Super. Danke für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de