www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Wert einer Reihe
Wert einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wert einer Reihe: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:34 Do 04.04.2013
Autor: supersim

Aufgabe
(Wert einer Reihe) Berechnen Sie jeweils den Wert der gegebenen Reihe.

[mm] \summe_{k=0}^{\infty} \bruch{2^{k} + 2 * 3^{k} + 1}{6^{k+1}} [/mm]

Um den Wert der Reihe zu ermitteln, brauche ich soweit ich weiß die Partialsumme. Wenn ich richtig liege, muss ich das ganze erstmal in drei Teile aufteilen. Bei den ersten beiden bin ich mir relativ sicher nur der dritte Teil mit der Konstanten 1 macht mir noch ein wenig Bauchschmerzen.

Meine aktuelle Lösung sieht so aus:

[mm] \bruch{1}{6}*\bruch{2^{k}}{6^{k}} [/mm] + [mm] \bruch{2}{6}*\bruch{3^{k}}{6^{k}} [/mm] + [mm] \bruch{1}{6}*\bruch{(\bruch{1}{1^{k}})^k}{6^{k}} [/mm]

Ist mein Ansatz soweit richtig oder stimmt das mit dem +1 Teil nicht?

lg Simon

        
Bezug
Wert einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Do 04.04.2013
Autor: Valerie20

Hi!


> (Wert einer Reihe) Berechnen Sie jeweils den Wert der
> gegebenen Reihe.

>

> [mm]\summe_{k=0}^{\infty} \bruch{2^{k} + 2 * 3^{k} + 1}{6^{k+1}}[/mm]

>

> Um den Wert der Reihe zu ermitteln, brauche ich soweit ich
> weiß die Partialsumme. Wenn ich richtig liege, muss ich
> das ganze erstmal in drei Teile aufteilen. Bei den ersten
> beiden bin ich mir relativ sicher nur der dritte Teil mit
> der Konstanten 1 macht mir noch ein wenig Bauchschmerzen.

Warum denn? Schreibs doch nicht so kompliziert [mm] $(\frac{1}{1^k})^k$. [/mm]

Es ist doch [mm] $1=1^k$ [/mm] für alle [mm] $k\in \IR$. [/mm]
[mm] $1^5=1*1*1*1*1$ [/mm]

> Meine aktuelle Lösung sieht so aus:

>

> [mm]\bruch{1}{6}*\bruch{2^{k}}{6^{k}}[/mm] +
> [mm]\bruch{2}{6}*\bruch{3^{k}}{6^{k}}[/mm] +
> [mm]\bruch{1}{6}*\bruch{(\bruch{1}{1^{k}})^k}{6^{k}}[/mm]



> Ist mein Ansatz soweit richtig oder stimmt das mit dem +1
> Teil nicht?

Ja, dein Ansatz ist richtig. Aber
wie gesagt, [mm] $\frac{1^k}{6^k}$ [/mm] tut es auch [ballon]

Hilft es dir, wenn ich dir sage, dass du die drei Teile auf die geometrische Reihe zurückführen kannst?

Valerie
 

Bezug
                
Bezug
Wert einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 Do 04.04.2013
Autor: supersim

Hallo Valerie,

vielen lieben Dank für deine schnelle Antwort.

Ja mit dem [mm] (\bruch{1}{1^k})^k [/mm] habe ich das unnütig kompliziert dargestellt. Ich wollte nur wissen, ob mein Ansatz richtig war, weil ich mir eben wegen dem +1 Teil nicht ganz sicher war und wollte nur überprüfen, ob das so richtig ist.

Mit der geometrische Reihe meinst du wohl das hier:
[mm] \bruch{1}{6}*(\bruch{2}{6})^k [/mm] + [mm] \bruch{2}{6}*(\bruch{3}{6})^k [/mm] + [mm] \bruch{1}{6}*(\bruch{1}{6})^k [/mm]

und dann weiter mit der üblichen Formel für die geometrische Reihe.

Bezug
                        
Bezug
Wert einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Do 04.04.2013
Autor: Valerie20

Hallo,

Stelle die Rückfragen am besten auch als Frage und nicht als Mitteilung.

> so richtig ist.

>

> Mit der geometrische Reihe meinst du wohl das hier:

Du hast die Terme auf jeden Fall so umgeformt, sodass du nun mit der geometrischen Reihe weitermachen kannst.

Deine Summe kannst du ja aufteilen. Es gilt:

[mm] \sum_{k=0}^{n}(a_k+b_k+c_k)=\sum_{k=0}^{n}(a_k)+\sum_{k=0}^{n}(b_k)+\sum_{k=0}^{n}(c_k)[/mm]


Die geometrische Reihe ist wiefolgt definiert:

[mm] \sum_{k=0}^{\infty}q^n=\frac{1}{1-q} [/mm] für $|q|<1$

> [mm]\bruch{1}{6}*(\bruch{2}{6})^k[/mm] +
> [mm]\bruch{2}{6}*(\bruch{3}{6})^k[/mm] +
> [mm]\bruch{1}{6}*(\bruch{1}{6})^k[/mm]

>

> und dann weiter mit der üblichen Formel für die
> geometrische Reihe.

Genau.

Valerie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de