Wertebereich < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:04 Mi 11.07.2007 | Autor: | Igor1 |
Hallo,
Zitat:
"Sei f: [mm] \IR \to \IR [/mm] eine stetige Funktion mit der Eigneschaft, dass f(x) für jedes x [mm] \in \IR [/mm] eine rationale Zahl ist."
Meine Frage ist: die Funktion nimmt die Werte in [mm] \IQ [/mm] an; warum wird die Abbildung f: [mm] \IR \to \IR [/mm] so definiert und nicht f: [mm] \IR \to \IQ [/mm] ?
Es kann sein, dass ich mich mit der allgemeinen Definition einer Abbildung bzw. Funktion nicht gut genug auskenne.
Schöne Grüße
Igor
|
|
|
|
> Hallo,
>
> Zitat:
>
> "Sei f: [mm]\IR \to \IR[/mm] eine stetige Funktion mit der
> Eigneschaft, dass f(x) für jedes x [mm]\in \IR[/mm] eine rationale
> Zahl ist."
Nebenbei bemerkt, obwohl dies nicht Deine Frage ist: diese Funktion muss konstant sein.
> Meine Frage ist: die Funktion nimmt die Werte in [mm]\IQ[/mm] an;
> warum wird die Abbildung f: [mm]\IR \to \IR[/mm] so definiert und
> nicht f: [mm]\IR \to \IQ[/mm] ?
Warum? - Man könnte diese Funktion jedenfalls als $f: [mm] \IR\rightarrow \IQ$ [/mm] definieren. In jedem Falle handelt es sich um dieselbe Menge von Zahlenpaaren (sofern man, im Sinne einer mengentheoretischen Reduktion des Funktionsbegriffs, die Funktion als Menge von Zahlenpaaren auffasst: eigentlich als mit ihrem Graph identisch). Aber ich denke der Kontext war schon einfach die Betrachtung von Funktionen [mm] $f:\IR\rightarrow \IR$. [/mm] Und die oben angeführte Funktion sollte nur eine Funktion dieses Typs mit einer speziellen Zusatzeigenschaft sein.
Man fasst ja auch solche Funktionen wie die Exponentialfunktion als [mm] $\IR\rightarrow \IR$ [/mm] auf, obwohl als Werte eigentlich nur positive reelle Zahlen auftreten. Oder, weiteres Beispiel: Polynomfunktionen [mm] $\IR\rightarrow \IR$. [/mm] Aber Polynomfunktionen geraden Grades nehmen bekanntlich auch nicht Werte aus ganz [mm] $\IR$ [/mm] an.
Aber zurück zum Kontext Deiner Frage, jener stetigen Funktion [mm] $f:\IR\rightarrow \IR$, [/mm] die nur Werte aus [mm] $\IQ$ [/mm] annimmt, für die also [mm] $f(\IR)\subseteq \IQ$ [/mm] gilt. Wenn [mm] $f:\IR\rightarrow \IQ$ [/mm] definiert würde, dann könnte $f$ stetig sein, ohne deswegen konstant sein zu müssen. Wird aber [mm] $f:\IR\rightarrow \IR$ [/mm] definiert, dann folgt, m.E., aus [mm] $f(\IR)\subseteq \IQ$, [/mm] dass $f$ konstant ist (Grund: das stetige Bild einer zusammenhängenden Menge muss zusammenhängend sein: die zusammenhängenden Teilmengen von [mm] $\IR$ [/mm] sind Intervalle).
> Es kann sein, dass ich mich mit der allgemeinen Definition
> einer Abbildung bzw. Funktion nicht gut genug auskenne.
Ich denke, dass in diesem Bereich auch die Literatur teilweise widersprüchlichen Konventionen folgt. Manche behalten den Begriff des "Wertebereiches" einer Funktion [mm] $f:A\rightarrow [/mm] B$ dem Bild des Definitionsbereiches, also $f(A)$ vor - andere tun dies nicht. Manche nennen deshalb $B$ nicht "Wertebereich" sondern, schwächer, "Wertevorrat" oder "Zielbereich" - andere wiederum nennen $B$ stets "Wertebereich" von $f$, auch wenn $f(A)$ nicht gleich $B$ sein sollte.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:41 Mi 11.07.2007 | Autor: | Igor1 |
Hallo Somebody !
Danke schön für diese Erklärung !
Ja, genau : f ist konstant. Das war genau der verborgene Teil der Zitat, das sollte ich bei der Aufgabe zeigen (dass sie konstant sein muss).
Schöne Grüße
|
|
|
|