www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Wertemenge
Wertemenge < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wertemenge: Bestimmung der Wertemenge
Status: (Frage) beantwortet Status 
Datum: 14:01 Di 31.10.2006
Autor: MontBlanc

Hallo,

also wenn ich bei einer Aufgabe die Wertemenge bestimmen, soll heißt das, dass ich angebe, welche y-werte bei graphen dieser funktion vorkommen.

Ich bestimme die Wertemenge auch ziemlich sicher, also Graph zeichnen und dann gucken... aber ich würde gerne wissen wie man die Wertemenge einer Funktion rechnerisch bestimmt. Wäre super wenn mir da jemand hilft, oder mir die Tomaten von den Augen nimmt, falls ich wieder etwas völlig eindeutiges übersehe.

Vielen dank

Bis denn  

        
Bezug
Wertemenge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Di 31.10.2006
Autor: Nienor

Hi,
also das ist keine vollständige Antwort, aber du kannst verschiedene Faktoren berücksichtigen:
Zum ersten die Extrema: Wenn es nur einen Hoch oder Tiefpkt. gibt, kannst du davon ausgehen, dass es oberhalb bzw. unterhalb davon keine y-Werte mehr gibt.
Außerdem kannst du ja berechnen ob es Polstelen gibt, die falen dann natürlich auch raus.
Aber da gibt's bestimmt auch noch andere Varianten!
Gruß, Anne

Bezug
                
Bezug
Wertemenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 Di 31.10.2006
Autor: MontBlanc

Huhu,

ja das war mir schon klar, so würde ich es auch machen. Aber da wir das in der Schule noch nicht hatten, sollen wir das anders bestimmen. Geht das ?
Ich habe mir diese ganze sache mit den tief und hochpkt. mehr oder weniger selbst beigebracht.

Bis denne

Bezug
        
Bezug
Wertemenge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Di 31.10.2006
Autor: M.Rex

Hallo

Ich denke es iist am sinnvollsten, die Grenzwertbetrachtung der Funktion vorzunehmen. Dieses machst du auf jeden Fall für [mm] \pm\infty [/mm] und evtl. noch an Polstellen.

Dann siehst du, ob y Werte aus ganz [mm] \IR [/mm] annimmt, oder nicht.

Klar gibt es Indikatoren.

Z.B. haben y=x², [mm] x^{n} [/mm] mit geradem n oder [mm] y=e^{x} [/mm] nur Werte in [mm] \IR^{+}, e^{x}, [/mm] sogar in [mm] \IR^{+}/\{0\} [/mm]


Marius





Bezug
                
Bezug
Wertemenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Di 31.10.2006
Autor: MontBlanc

Huhu Marius,

dazu habe ich nochmal eine Frage, ich meine ich weiß so einigermaßen wie man extremstellen und so weiter ausrechnet, aber wie genau funktioniert eine Grenzwertbetrachtung [mm] \pm\infty [/mm] ? Dieses [mm] \infty [/mm] habe ich so noch nicht verstanden, also ich weiß, dass es unendlich heißt, aber wie genau läuft das dann ab ? Könntest du das vll an einem Beispiel erklären ?

Dankeschön

Exeqter

Bezug
                        
Bezug
Wertemenge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Di 31.10.2006
Autor: M.Rex

Nehmen wir z.B. mal die Funktionen [mm] f(x)=x^{5} [/mm] und [mm] g(x)=x^{4} [/mm]

Zu [mm] g(x)=x^{4}. [/mm]

Wenn du jetzt mal x ganz weit ins negative laufen lässt, also gegen [mm] -\infty, [/mm] wird der Funktionswert g(x) immer grösser, er läuft also gegen [mm] \red{+}\infty. [/mm]


Jetzt lass mal x immer grösser werden, also gegen [mm] +\infty [/mm] laufen. Auch hier wird der Funktionswert g(x) immmer grösser, also läuft g(x) auch gegen [mm] +\infty. [/mm]

Dies schreibt man wie folgt:

[mm] g(x)\to+\infty [/mm] für [mm] x\to-\infty [/mm]
und [mm] g(x)\to+\infty [/mm] für [mm] x\to+\infty [/mm]

Das heisst, es gibt unterhalb des Tiefpunktes im Ursprung keinen y-Wert mehr, der von g(x) angenommen wird. Also ist der Wertebereich [mm] W=\IR^{+} [/mm]

Zu [mm] f(x)=x^{5} [/mm]

Hier gilt, mit der selben Erklärung wie oben.
[mm] f(x)\to-\infty [/mm] für [mm] x\to-\infty [/mm]
[mm] f(x)\to+\infty [/mm] für [mm] x\to+\infty [/mm]

Also läuft der Graph von [mm] -\infty [/mm] bis [mm] \infty, [/mm] so dass gilt:
[mm] W=\IR [/mm]

Als drittes Beispiel mal [mm] e^{x} [/mm]

Hier gilt:

[mm] e^{x}\to\red{0} [/mm] für [mm] x\to-\infty [/mm]
[mm] e^{x}\to+\infty [/mm] für [mm] x\to+\infty [/mm]

Also gilt:
[mm] W=\IR^{+}/\{0\} [/mm] , da 0 nie erreicht wird.

Marius

Bezug
                                
Bezug
Wertemenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:59 Di 31.10.2006
Autor: MontBlanc

Hi,

super vielen dank, hast du super erklärt =)).

Bis demnächst

exeqter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de