Wertetabelle < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Ich muss eine Wertetabelle zu der folgenden Funktion erstellen (ist dies überhaupt eine Funkton?) :
y= 3x²-6x+5
(0|5) wäre zum beispiel der erste Punkt oder?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:58 So 27.01.2008 | Autor: | Sabah |
Ich muss eine Wertetabelle zu der folgenden Funktion erstellen (ist dies überhaupt eine Funkton?) :
y= 3x²-6x+5
(0|5) wäre zum beispiel der erste Punkt oder?
Das ist richtig was du gemacht hast, also hast du für x den wert 0 eingesetzt, dabei ist 5 als Ergebnis raus gekomen.
das bedeutet [mm] 0\mapsto5
[/mm]
Also 0 ist ein Element von definitionsbereich, und 5 ist ein Element vom Wertebereich.
|
|
|
|
|
stellt diese Funktion eine ziemlich weit verschobene parabel dar??
bei der wertetabelle hab ich bis 3 und -3 gemacht, undd da komme ich auf (3|68) und (-3|104)!! Is dies nish zu groß um es in ein koordinatensystem zu zeichnen?
(0|5)
(1|8)
(2|5)
(3|68)
(-1|20)
(-2|23)
(-3|104)
-...und ich MUSS zeichnen
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:43 So 27.01.2008 | Autor: | tete |
Also die Funktion stellt schon eine verschobene Parabel dar, das ist korrekt, dennoch stimmen nicht alle deiner Werte!
Es sind nur die Werte für x=0 und x=2 in Ordnug.
Du musst eigentlich nichts weiter tun als für die x in deiner Funktion einfach z.B. -2 einzusetzen!
[mm] f(x)=3x^{2}-6x+5
[/mm]
[mm] \Rightarrow
[/mm]
[mm] f(-2)=3*(-2)^{2}-6*(-2)+5 [/mm] = ???
so machst du das nach und nach am besten du gehst in Schritten von 0,5 vor!
Übrigens wenn die Werte zum zeichnen zu "groß" sind, dann wähle einfach eine andere Beschriftung an der y-Achse!
LG
|
|
|
|
|
hää?
Müsste sich die "²" nicht auf [3*(-2)] beziehen?
da 3x² ... ??
oda muss ich doch erst mal (-2)² rechnen und dann erst 4*3??
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:05 So 27.01.2008 | Autor: | tete |
Deine zweite Annahme ist richtig!
es gilt nämlich:
[mm] (3*x)^{2}\not=3*x^{2}
[/mm]
hier ein einfaches Gegenbeispiel:
[mm] (3*1)^{2}=3^{2}=9 \not= 3*1^{2}=3*1=3
[/mm]
also erst die >²< berechnen und dann multiplizieren! denn quadrieren bindet stärker als Multiplikation, es ist wie bei der Punkt-vor-Strichrechnung, erst Punkt dann Strich, so gilt hier erst quadrieren dann Multiplizieren!
LG
|
|
|
|
|
uii, die parabel ist ziemlich dünn...
sind die punkte so richtig?
(1|2)
(2|5)
(3|14)
(-1|14)
(-2|29)
(-3|50)
Was kann ich noch zu dieser Parabel sagen?
einfache funktion?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:59 So 27.01.2008 | Autor: | Denise86 |
Ja, das ist eine Funktion. Du musst einfach in die Funktion für x Werte z.B. von -5 bis 5 einsetzen und dann bekommst du y-Werte raus. Du hast z.B. für x eine 0 eingesetzt, dann hast du den y-Wert = 5 richtig rausbekommen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:27 So 27.01.2008 | Autor: | tete |
Hallo,
wenn du keine Vorgaben hast, für welche x du eine Wertetabelle erstellen sollst, denke ich, dass es ausreichend ist, wenn du die x von -1 bis 3 betrachtest, am besten in Schritten von 0,5!
LG
|
|
|
|