www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - Wie geht dieser Rechenschritt?
Wie geht dieser Rechenschritt? < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wie geht dieser Rechenschritt?: Laplace-Transformation
Status: (Frage) beantwortet Status 
Datum: 15:12 Fr 18.09.2009
Autor: blumich86

Aufgabe
Man berechne die Laplace-Transformation L[f](x) der folgende Funktion und gebe den Definitionsbereich der
Laplace-Transformation an:

f(t)=sinh(t)-sin(t)

hallo zusammen,

ich komme bei einem Rechenschritt nicht weiter. ich hoffe ihr könnt mir weiterhelfen, und zwar verstehe ich den letzen schritt nicht der zum ergebnis führt.

L[f][x)= [mm] 1/2L[e^t](x) [/mm] - [mm] 1/2L[e^{-t}] [/mm] - L[sint](t)
       = 1/2*1/(x-1) - 1/2*1/(x+1) - [mm] 1/(x^2+1) [/mm]
       =...??? wie kommt man jetzt auf das ergebnis??
       = [mm] 2/(x^4-1) [/mm]

        
Bezug
Wie geht dieser Rechenschritt?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Fr 18.09.2009
Autor: fred97

Fasse zunächst

          1/2*1/(x-1) - 1/2*1/(x+1)

zu einem Bruch zusammen (beachte: (x-1)(x+1) = [mm] x^2-1) [/mm]

Wenn Du es richtig machst kommt [mm] \bruch{1}{x^2-1} [/mm] heraus

Dann ganauso:  [mm] \bruch{1}{x^2-1}- \bruch{1}{x^2+1}= \bruch{2}{x^4-1} [/mm]


FRED

Bezug
                
Bezug
Wie geht dieser Rechenschritt?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:33 Fr 18.09.2009
Autor: blumich86

hey super dankeschön:))) es hat geklappt

Bezug
                
Bezug
Wie geht dieser Rechenschritt?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:03 Fr 18.09.2009
Autor: blumich86

Aufgabe
ii) [mm] f(t)=(t-1)e^{-2t} [/mm]

ich soll zu den gegebenen Funktionen auch den Definitionsbereich festlegen.
der definitionsbereich wird ja anhand der laplacetabelle angegeben. im ersten teil ist der definitionsbereich {1,-1,0}
in der lösung steht: die laplace-transformierte existiert für x>A=max{1,-1,0}=1. dazu meine frage muss man einen bzw. den maximal Wert für den Definitionsbereich bestimmen??

zum zweiten aufgabentyp: da verstehe ich überhaupt nicht den definitionsbereich:

[mm] L[f](x)=L[t^2*e^{-2t}](x) [/mm] + [mm] 2L[t*e^{-2t}](x)+ L[e^{-2t}](x) [/mm]
       [mm] =...=(x^2+2x+2)/(x+2)^3 [/mm]

wenn ich in die laplace-transformationstabelle gucke bekomme ich als definitionsbereich{-2} raus, aber als lösung kommt -1 raus, warum?? wo liegt mein fehler


Bezug
                        
Bezug
Wie geht dieser Rechenschritt?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 26.09.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Wie geht dieser Rechenschritt?: hat keiner eine idee?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Sa 19.09.2009
Autor: blumich86

hat keiner eine idee warum im zweiten aufgabenteil so ein definitionsbereich aufgestellt wird??

Bezug
                
Bezug
Wie geht dieser Rechenschritt?: Wie ist Defbereich definiert?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:34 So 20.09.2009
Autor: Disap

Hallo blumich86

> hat keiner eine idee warum im zweiten aufgabenteil so ein
> definitionsbereich aufgestellt wird??

Kannst du uns sagen, wie ihr den Definitionsbereich definiert habt?

Mir ist nicht klar, wie du z. B.

> ii) [mm]f(t)=(t-1)e^{-2t}[/mm]
>  ...
> der definitionsbereich wird ja anhand der laplacetabelle
> angegeben. im ersten teil ist der definitionsbereich
> {1,-1,0}

errechnet hast.

MfG!
Disap

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de