Wie komm ich auf die Lösungen? < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:51 So 06.12.2015 | Autor: | Teryosas |
Aufgabe | Habe die Funktion
[mm] F(\ddot{y} [/mm] , [mm] \dot{y}, [/mm] y, [mm] \dot{u}, [/mm] u) = [mm] 2\ddot{y}+3y^2\dot{y}-6ycos(y) [/mm] - [mm] \wurzel{u}\dot{u} [/mm] = 0 |
hey,
versuche mich gerade an Hausübungen in Regelungstechnik und muss obrige Funktion partiell ableiten um sie um die Ruhelage bei [mm] y_{0}=\bruch{\pi}{2} [/mm] und [mm] u_{0}=1 [/mm] zu linearisieren. Dabei sind natürlich alle Ableitungen gleich 0.
Als Lösung kommen unter anderem diese beiden Ergebnisse raus, wo ich jeweils nicht selbst aufs gleiche Ergebnisse komme. Könnte mir da evtl. jemand auf die Sprünge helfen?
[mm] \bruch{\partial F}{\partial y} [/mm] = [mm] -6y\dot{y}-6cos(y)+6ysin(y)
[/mm]
Warum kommt hier beim 1. Term ein "minus" davor? [mm] 3y^2*\dot{y} [/mm] ist in meinen Augen abgeleited lediglich [mm] 6y\dot{y} [/mm] oder nicht?
[mm] \bruch{\partial F}{\partial u} [/mm] = [mm] -\bruch{\dot{u}}{2*2\wurzel{u}}
[/mm]
Ich komme auf [mm] -\bruch{\dot{u}}{2\wurzel{u}}, [/mm] da [mm] \wurzel{u} [/mm] = [mm] u^\bruch{1}{2} [/mm] ist. Warum ist in der Lösung noch zusätzlich ein [mm] \bruch{1}{2} [/mm] untergebracht?
LG
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:28 So 06.12.2015 | Autor: | fred97 |
> Habe die Funktion
>
> [mm]F(\ddot{y}[/mm] , [mm]\dot{y},[/mm] y, [mm]\dot{u},[/mm] u) =
> [mm]2\ddot{y}+3y^2\dot{y}-6ycos(y)[/mm] - [mm]\wurzel{u}\dot{u}[/mm] = 0
> hey,
> versuche mich gerade an Hausübungen in Regelungstechnik
> und muss obrige Funktion partiell ableiten um sie um die
> Ruhelage bei [mm]y_{0}=\bruch{\pi}{2}[/mm] und [mm]u_{0}=1[/mm] zu
> linearisieren. Dabei sind natürlich alle Ableitungen
> gleich 0.
> Als Lösung kommen unter anderem diese beiden Ergebnisse
> raus, wo ich jeweils nicht selbst aufs gleiche Ergebnisse
> komme. Könnte mir da evtl. jemand auf die Sprünge
> helfen?
>
> [mm]\bruch{\partial F}{\partial y}[/mm] =
> [mm]-6y\dot{y}-6cos(y)+6ysin(y)[/mm]
>
> Warum kommt hier beim 1. Term ein "minus" davor?
> [mm]3y^2*\dot{y}[/mm] ist in meinen Augen abgeleited lediglich
> [mm]6y\dot{y}[/mm] oder nicht?
Du hast recht.
>
>
>
> [mm]\bruch{\partial F}{\partial u}[/mm] =
> [mm]-\bruch{\dot{u}}{2*2\wurzel{u}}[/mm]
>
> Ich komme auf [mm]-\bruch{\dot{u}}{2\wurzel{u}},[/mm] da [mm]\wurzel{u}[/mm]
> = [mm]u^\bruch{1}{2}[/mm] ist. Warum ist in der Lösung noch
> zusätzlich ein [mm]\bruch{1}{2}[/mm] untergebracht?
Wieder hast Du recht
Fred
>
>
> LG
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:47 So 06.12.2015 | Autor: | Teryosas |
Dann hats wohl iwas mit dem Fach selbst zu tun das die des dazurechnen dürfen...
Muss ich wohl mal extra in die Uni wenn die Sprechstunde haben. Hatte eigentlich gehofft es vermeiden zu können. -.-
Aber danke für deine Bestätigung :)
|
|
|
|