Wie soll ich weiter rechnen? < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:37 So 02.06.2013 | Autor: | Chris001 |
Aufgabe | Ein quaderförmiger Karton soll aus möglichst wenig Material hergestellt werden. Wie sind die Kantenlängen zu wählen, wenn die länge dreimal so groß wie die Höhe und der Rauminhalt 800cm³ groß sein soll? |
Ich habe ja die Nebenbedingung das V=800cm³ ist und die Länge(ich nenne sie mal a) dreimal so lang ist wie die Höhe(hier c).Die Formel für das Volumen lautet: V=a*b*c.
Dann setze ich die gegebenen Größen ein.
800=3c*b*c. Diese kann ich noch umstellen.
800=3c²*b.
Und wie soll ich jetzt weiter rechnen?
Ich finde keinen Weg wie ich nun die Formel umstellen kann oder weiter rechen kann. Könntet ihr mir bitte helfen?
Vielen Dank schon mal im Vorraus!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:51 So 02.06.2013 | Autor: | M.Rex |
Hallo
> Ein quaderförmiger Karton soll aus möglichst wenig
> Material hergestellt werden. Wie sind die Kantenlängen zu
> wählen, wenn die länge dreimal so groß wie die Höhe und
> der Rauminhalt 800cm³ groß sein soll?
> Ich habe ja die Nebenbedingung das V=800cm³ ist und die
> Länge(ich nenne sie mal a) dreimal so lang ist wie die
> Höhe(hier c).Die Formel für das Volumen lautet: V=a*b*c.
> Dann setze ich die gegebenen Größen ein.
> 800=3c*b*c. Diese kann ich noch umstellen.
> 800=3c²*b.
> Und wie soll ich jetzt weiter rechnen?
Du brauchst jetzt noch die Oberfläche, diese soll ja minimiert werden.
Generell gilt für die Oberfläche:
[mm]O=2ab+2ac+2bc[/mm]
Mit a=3c ergibt sich daraus:
[mm]O=2\cdot3c\cdot b+2\cdot3c\cdot c+2bc[/mm]
[mm]=8bc+6c^{2}[/mm]
Nun kommt die Nebenbedingung ins Spiel, es soll gelten:
[mm] $a\cdot b\cdot [/mm] c=800$
Mit a=3c
[mm] $3c\cdot b\cdot [/mm] c=800$
[mm] $\Leftrightarrow 3bc^{2}=800$
[/mm]
[mm] $\Leftrightarrow b=\frac{800}{3c^{2}}$
[/mm]
Ersetze damit in der Oberflächenformel b, dann hast du:
[mm] O=8bc+6c^{2}=8\cdot\frac{800}{3c^{2}}+6c^{2}=\frac{6400}{3c}+6c^{2}=\frac{6400}{3}c^{-1}+6c^{2}
[/mm]
Bestimme von dieser Funktion nun das Minimum.
Marius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:03 So 02.06.2013 | Autor: | Chris001 |
Vielen Dank! Das habe ich toatl außer acht gelassen.
Nun ist mir ein licht aufgegangen.
Vielen Dank für deine verständliche und schnelle Anrwort :)
|
|
|
|