www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Wie wurde umgeformt
Wie wurde umgeformt < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wie wurde umgeformt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Sa 04.01.2014
Autor: pc_doctor

Aufgabe
[mm] 2^{n} [/mm] > [mm] n^{2} [/mm] mit [mm] n\ge [/mm] 5
Induktion

Hallo,

ich habe eine Frage zum IS , da ich eine Umformung nicht nachvollziehen kann

Induktionsanfang : n=5 : [mm] 2^{5} [/mm] = 32 > 25 = [mm] 5^{2} [/mm]

Induktioktionsschritt:
n-> n+1

[mm] 2^{n+1} [/mm] = [mm] 2*2^{n} [/mm] > [mm] 2*n^{2} [/mm] = [mm] n^{2} +n^{2} [/mm] > [mm] n^{2}+3n [/mm] > [mm] n^{2} [/mm] +2n +1 = [mm] (n+1)^{2} [/mm]

Ich verstehe das nicht:

[mm] n^{2} +n^{2} [/mm] > [mm] n^{2}+3n [/mm] > [mm] n^{2} [/mm] +2n +1

[mm] n^{2} +n^{2} [/mm] verstehe ich noch , aber wie kommen die auf +3n ?
Danke im Voraus.

        
Bezug
Wie wurde umgeformt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Sa 04.01.2014
Autor: angela.h.b.


> [mm]2^{n}[/mm] > [mm]n^{2}[/mm] mit [mm]n\ge[/mm] 5
>  Induktion
>  Hallo,
>  
> ich habe eine Frage zum IS , da ich eine Umformung nicht
> nachvollziehen kann
>  
> Induktionsanfang : n=5 : [mm]2^{5}[/mm] = 32 > 25 = [mm]5^{2}[/mm]
>  
> Induktioktionsschritt:
>  n-> n+1

>  
> [mm]2^{n+1}[/mm] = [mm]2*2^{n}[/mm] > [mm]2*n^{2}[/mm] = [mm]n^{2} +n^{2}[/mm] > [mm]n^{2}+3n[/mm] >
> [mm]n^{2}[/mm] +2n +1 = [mm](n+1)^{2}[/mm]
>  
> Ich verstehe das nicht:
>  
> [mm]n^{2} +n^{2}[/mm] > [mm]n^{2}+3n[/mm] > [mm]n^{2}[/mm] +2n +1
>
> [mm]n^{2} +n^{2}[/mm] verstehe ich noch , aber wie kommen die auf
> +3n ?

Hallo,

na, es ist doch [mm] n\ge [/mm] 5.
Also ist [mm] n^2=n*n\ge [/mm] 5*n, und 5*n ist größer als 3*n.

Wir haben also

[mm] n^2+n^2>n^2+3n=n^2+2n+n\ge n^2+2n+5>n^2+2n+1 [/mm]

LG Angela

> Danke im Voraus.


Bezug
                
Bezug
Wie wurde umgeformt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Sa 04.01.2014
Autor: pc_doctor

Hallo,

aber wieso denn größer als 3n , wieso unbedingt 3n ?

Bezug
                        
Bezug
Wie wurde umgeformt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Sa 04.01.2014
Autor: reverend

Hallo pc-doctor,

> aber wieso denn größer als 3n , wieso unbedingt 3n ?

Weil das eine geschickte Abschätzung ist, die einem den Induktionsschritt erleichtert. Natürlich hätte man auch [mm] >\wurzel{21}n [/mm] nehmen können, sich dann aber danach einen Wolf gerechnet.

Grüße
reverend


Bezug
                                
Bezug
Wie wurde umgeformt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Sa 04.01.2014
Autor: pc_doctor

Also könnte ich auch 4n , 5n oder 6n nehmen ja ?

Bezug
                                        
Bezug
Wie wurde umgeformt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Sa 04.01.2014
Autor: DieAcht


> Also könnte ich auch 4n , 5n oder 6n nehmen ja ?  

Wie funktioniert der Induktionsschritt?

Ziel: Zeigen der Aussage für [mm] $n\to [/mm] n+1$

Dabei setzt du deine IV ein und fasst zusammen.
Dann gelangst du an den Punkt, an dem du dich fragst:

      Wo will ich hier eigentlich hin?

Deshalb schreibt man auch gerne direkt hin was gezeigt werden soll.

In deinem Beispiel kommst du, nachdem du die IV eingesetzt hast, bei [mm] 2n^2 [/mm] an.

Jetzt kommt:

      Wo will ich hier eigentlich hin?

Antwort:

      Ich will zu [mm] $(n+1)^2$, [/mm] also fängst du hinten an, also:

      [mm] n^2+2n+1=(n+1)^2 [/mm]


Es muss also irgendwie gelten:

      [mm] 2n^2>\ldots>n^2+2n+1 [/mm]

Die Punkte musst du nun ausfüllen.
Das ist wie bei der [mm] \epsilon-Konvergenz. [/mm]
Du machst dir vorher Gedanken und schreibst den Beweis hin und alle denken, das es Magie ist ;-)

Wieso gilt nun [mm] 2n^2>n^2+2n+1? [/mm]

      [mm] 2n^2=n^2+n^2>n^2+1000n>n^2+999n>\ldots>n^2+3n [/mm]

Wieso $3n$? Weil wir zu $2n+1$ wollen. Damit ist es nur deutlicher und schöner!

      [mm] >n^2+2n+1=(n+1)^2 [/mm]


DieAcht

Bezug
                                                
Bezug
Wie wurde umgeformt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 Sa 04.01.2014
Autor: pc_doctor

Das heißt also , ich muss nicht immer von links nach rechts gehen ? Wenn ich auf [mm] (n+1)^{2} [/mm] kommen will , kann ich das erstmal umformen und auch so von rechts nach links gehen , oder ?

Bezug
                                                        
Bezug
Wie wurde umgeformt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Sa 04.01.2014
Autor: DieAcht


> Das heißt also , ich muss nicht immer von links nach
> rechts gehen ? Wenn ich auf [mm](n+1)^{2}[/mm] kommen will , kann
> ich das erstmal umformen und auch so von rechts nach links
> gehen , oder ?

[ok]

Du musst nicht immer von links nach rechts beweisen.
Du kannst es auch umdrehen. Ob es einfacher wird ist aber nicht gesichert!


DieAcht

Bezug
                                                                
Bezug
Wie wurde umgeformt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:38 Sa 04.01.2014
Autor: pc_doctor

Oh jetzt , wird mir einiges klarer. Alles klar vielen vielen Dank für die ganzen Antworten.

Bezug
                        
Bezug
Wie wurde umgeformt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Sa 04.01.2014
Autor: angela.h.b.


> Hallo,
>  
> aber wieso denn größer als 3n , wieso unbedingt 3n ?

Hallo,

weil's
1. nicht falsch ist
und
2. funktioniert.

LG Angela



Bezug
                                
Bezug
Wie wurde umgeformt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 Sa 04.01.2014
Autor: pc_doctor

Echt krass , hätte ich nicht gedacht , dass man das so mit Abschätzung und so macht. Noch was dazu gelernt. Danke !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de