www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wieviele Duschen
Wieviele Duschen < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wieviele Duschen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Mi 08.01.2025
Autor: hase-hh

Aufgabe
Für ein Festival werden 72 Duschen aufgestellt. Die Wahrscheinlichkeit, dass eine Dusche nach dem 1. Tag noch einwandfrei funktioniert beträgt 94%.

Man möchte, dass nach dem 1. Tag mindestens 70 Duschen einwandfrei funktionieren.

Wieviel Duschen müsste man mindestens aufstellen, damit dieses Ziel mit einer Wahrscheinlichkeit von höchstens 10% nicht verfehlt wird?



Moin Moin,

wir gehen davon aus, dass X: "Anzahl der funktionsfähigen Duschen", binomialverteilt ist mit p = 0,94 und n = 72.

Für die Aufgabe müsste das n neu bestimmt werden.

Meine Überlegungen:

[mm] P(X\le69) \le [/mm] 0,1

Wie würde ich das lösen?


1. Idee
Wenn [0; [mm] \mu -c*\sigma] [/mm] das 10%-KI Intervall ist, wäre [mm] [\mu -c*\sigma [/mm] +1; [mm] \mu +c*\sigma [/mm] +1] das 80% KI-Intervall =>

  [mm] \phi(c) [/mm] = (1 +0,8) /2 = 0,9 => c = 1,28.



0,94n - [mm] 1,28*\wurzel{n*0,94*0,06} [/mm] = 69

n = 76,23 ?

Also müsste man mindestens 77 Duschen aufstellen.

Richtig?


2. Idee
[0;69] ist das 10%-KI mit [0; [mm] \mu +c*\sigma] [/mm]

  [mm] \phi(c) [/mm] = (1 +0,1) /2 = 0,55 => c = - 1,28.

[mm] \mu +c*\sigma [/mm] = 69

0,94n + [mm] (-1,28)*\wurzel{n*0,94*0,06 } [/mm] = 69

n = 76,23


Also müsste man mindestens 77 Duschen aufstellen.

Richtig?





Habt ihr noch andere Ideen?


Danke für eure Hilfe!














        
Bezug
Wieviele Duschen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:26 Do 09.01.2025
Autor: statler

Du rechnest hier mit den [mm] $\sigma$-Bereichen [/mm] und erhältst deswegen immer nur Näherungslösungen. Darum ist auch die Bezeichnung Konfidenzintervall hier nicht ganz korrekt, sondern du arbeitest dich mit einer Näherungslösung zur korrekten Antwort vor. In diesem Fall hast du Glück gehabt, deine Antwort ist richtig. Aber das hättest du noch mit den exakten Werten der zugehörigen Binomialverteilung überprüfen müssen. Das heißt, die Fälle n = 77 und n = 76 jeweils für $k [mm] \le [/mm] 69$ und für $k [mm] \le [/mm] 70$ nachrechnen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de