www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Winkel
Winkel < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel: Was ist ein Winkel?
Status: (Frage) beantwortet Status 
Datum: 16:42 Fr 29.07.2005
Autor: Woltan

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hey ho allerseits,
ich überleg nun schon einige zeit wie ich dieses problem lösen kann und komm nicht drauf, drum hier meine frage an euch:
Ich möchte eine Funktion schreiben, die als parameter einen anfangs- und endpunkt (2D) und einen winkel übergeben bekommt. Diese funktion soll mir dann den Mittelpunkt des entstehenden kreisesbogens zurückgeben. Also quasi so:
$\overrightarrow{M}=\overrightarrow{f}(\overrightarrow{x}, \overrightarrow{y}, \phi)$
Es entsteht also ein reisabschnitt, wobei sich der radius wie folgt berechnet:
$r=\sqrt{\frac{(x_2-x_1)^2+(y_2-y_1)^2}{2(1-\cos\phi)}$
Hier ist der Punkt an dem ich nicht mehr weiter komme:
Ich glaub es müsste sich der Mittelpunkt über die Kreisgleichung ($r^2=(x-x_M)^2+(y-y_M)^2$) finden lassen, da ich ja zwei Punkte gegeben habe und den Radius auch kenne. Nur leider hab ich hier irgendwie einen aussetzer. Ich hoffe einer von euch kann mir da weiterhelfen, ich bin für jeden tip dankbar, und wenn mir jemand die lösung postet, dann vielleicht auch ein kleines wörtchen auf den rechenweg ;-)
danke schonmal im vorraus
cherio Woltan
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Winkel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:51 Fr 29.07.2005
Autor: Woltan

Hey ho,
ich bin gerade auf die lösung gekommen
es ist schon erstaunlich wie man sich einen ganzen tag um die ohren haun kann obwohl das problem so einfach war.
und ein bisschen peinlich ist es auch
cherio

Bezug
        
Bezug
Winkel: Ansätze
Status: (Antwort) fertig Status 
Datum: 23:20 Fr 29.07.2005
Autor: Loddar

Hallo Woltan!



> Es entsteht also ein Kreisabschnitt, wobei sich der radius
> wie folgt berechnet:
> [mm]r=\sqrt{\frac{(x_2-x_1)^2+(y_2-y_1)^2}{2(1-\cos\phi)}[/mm]

[ok] Unter der Voraussetzung, daß für Deinen Winkel [mm] $\phi$ [/mm] gilt: [mm] $\phi [/mm] \ =\ [mm] \angle P_1 [/mm] M [mm] P_2$ [/mm] (also: [mm] $\phi$ [/mm] ist der Winkel am Mittelpunkt zu den beiden gegebenen Punkten = Mittelpunktswinkel).


> Ich glaub es müsste sich der Mittelpunkt über die
> Kreisgleichung ([mm]r^2=(x-x_M)^2+(y-y_M)^2[/mm]) finden lassen, da
> ich ja zwei Punkte gegeben habe und den Radius auch kenne.

Ich liefere Dir mal einen anderen Ansatz, der für [mm] $\IR^2$ [/mm] klappen sollte.


[1.] Ermittle den Vektor zwischen den beiden gegebenen Punkten [mm] $P_1$ [/mm] und [mm] $P_2$: [/mm]

[mm] $\overrightarrow{P_1 P_2} [/mm] \ = \ [mm] \overrightarrow{OP_2} [/mm] - [mm] \overrightarrow{OP_1} [/mm] \ = \ [mm] \vektor{x_2-x_1 \\ y_2-y_1}$ [/mm]


[2.] Ermittle den Höhenfußpunkt $Q$ = Mittelpunkt der Strecke [mm] $\overline{P_1 P_2}$ [/mm]

[mm] $\overrightarrow{OQ} [/mm] \ = \ [mm] \bruch{1}{2}*\left(\overrightarrow{OP_1} + \overrightarrow{OP_2}\right) [/mm] \ = \ [mm] \vektor{\bruch{x_1+x_2}{2} \\ \bruch{y_1+y_2}{2}}$ [/mm]



[3.] Ermittle einen Einheits-Normalenvektor [mm] $\vec{n} [/mm] \ = \ [mm] \vektor{n_x \\ n_y}$ [/mm] auf den Vektor [mm] $\overrightarrow{P_1 P_2} [/mm] \ = \ [mm] \vektor{x_2-x_1 \\ y_2-y_1}$ [/mm] mit:

[mm] $\vec{n}*\overrightarrow{P_1 P_2} [/mm] \ = \ [mm] \vektor{n_x \\ n_y} [/mm] * [mm] \vektor{x_2-x_1 \\ y_2-y_1} [/mm] \ = \ 0$ und  [mm] $\left|\vec{n}\right| [/mm] \ = \ 1$


[4.] Ermittle die Länge dieser Höhe $h_$ im Dreieck [mm] $\Delta P_1 [/mm] M [mm] P_2$: [/mm]

[mm] $\cos\left(\bruch{\phi}{2}\right) [/mm] \ = \ [mm] \bruch{h}{r}$ $\gdw$ [/mm]    $h \ = \ [mm] r*\cos\left(\bruch{\phi}{2}\right)$ [/mm]


[5.] Ermittlung der beiden möglichen Mittelpunkte [mm] $M_1$ [/mm] und [mm] $M_2$ [/mm] durch die Parametergleichung der Geraden durch die Punkte [mm] $M_1$ [/mm] und [mm] $M_2$: [/mm]

[mm] $g_M [/mm] \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \overrightarrow{OQ} [/mm] + [mm] \lambda*\vec{n}$ [/mm]


[mm] $\overrightarrow{OM_1} [/mm] \ = \ [mm] \overrightarrow{OQ} \red{+} h*\vec{n}$ [/mm]

[mm] $\overrightarrow{OM_2} [/mm] \ = \ [mm] \overrightarrow{OQ} \red{-} h*\vec{n}$ [/mm]


Kommst Du damit etwas weiter?

Gruß
Loddar


Bezug
                
Bezug
Winkel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:13 Sa 30.07.2005
Autor: Woltan

Hallo Loddar,
danke für deine Antwort, ich verstehe deinen "Ansatz" (wenn das mal nicht die lösung ist ;- ) ) wenngleich ich es anders gelöst hab. Ich poste einfach mal wie ich das gemacht habe:
Mein Ansatz fing an, dass ich beide Kreisgleichungen benutzt habe um eine Gerade durch die Beiden Schnittpunkte (falls es zwei sein, das müsste vorher überprüft werden) zu ermitteln.
[mm] $(x-x_{M1})^2+(y-y_{M1})^2=r_1^2$ [/mm]
[mm] $(x-x_{M2})^2+(y-y_{M2})^2=r_2^2$ [/mm]
Da die Mittelpunkte ja bekannt sind, ergibt sich ein Gleichungssystem mit zwei Unbekannten ($x$ und $y$).
Dieses nach $y$ aufgelöst, ergibt mir eine Gerade, die durch die beiden Schnittpunkte führt.
Setzt man diese Gerade nun wiederum in die Kreisgleichung für $y$ ein:
[mm] $(x-x_{M1})^2+(mx+c-y_{M1})^2=r_1^2$ [/mm]
Dies ist nun ein Gleichungssystem mit einer unbekannten und kann geklöst werden.

Danke aber trozdem für deinen Weg Loddar, ich glaub ich werd aber bei meinem bleiben ;- )
cherio Woltan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de