www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Winkel zwischen 2 Ebenen
Winkel zwischen 2 Ebenen < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel zwischen 2 Ebenen: Idee
Status: (Frage) beantwortet Status 
Datum: 13:03 Mo 23.05.2011
Autor: LadyVal

Aufgabe
Bestimmen Sie die Ebenen, die unter der Ebene E: [mm] 3x_{1} [/mm] + [mm] 4x_{3} [/mm] = 0 die Punkte A (0/0/0) und B (4/0/-3) gemeinsam haben und die Ebene E unter einem Winkel von 30° schneiden.

Ich habe keine wirkliche Ahnung wie es losgeht.
Überlegt habe ich mir, dass wohl 2 Ebenen zu erwarten sind, die diese Bedingung erfüllen.
Und weiter überlegt habe ich mir, dass man vermutlich mit der Winkel-Formel rechnet.
cos 30° = [mm] \bruch{Betrag von 3n_{1}+4n_{3}}{5*Betrag von \wurzel{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}} [/mm]

Aber weiter?
:((

Über Eure Unterstützung freu ich mich!

        
Bezug
Winkel zwischen 2 Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Mo 23.05.2011
Autor: Diophant

Hallo LadyVal,

vielleicht hat bisher niemand geantwortet, weil ehrlich gesagt die Bedeutung dieser Formulierung:

> ...die unter der Ebene E: [mm]3x_{1}[/mm] +
> [mm]4x_{3}[/mm] = 0 die Punkte A (0/0/0) und B (4/0/-3) gemeinsam
> haben ...

völlig schleierhaft ist. Sieht man auf der anderen Seite die Punkte A und B scharf an, so entdeckt man, dass beide auf E liegen. Die Schnittgerade der gesuchten gesuchte Ebene mit E sollte also A und B enthalten.

Ich würde daher das Problem anders angehen: stelle die Gleichung einer Ebenenschar auf, deren Repräsentanten sich alle in der Geraden durch A und B schneiden. Diese Ebenenschar wird ja auch noch einen Parameter in ihrer Gleichung aufweisen, aber eben nur einen und nicht drei. Und mit diesem Normalenvektor führst du dann deine obige Rechnung durch und beachtest noch

[mm] \cos{30^{\circ}}=\frac{\wurzel{3}}{2} [/mm]

Gruß, Diophant

Bezug
                
Bezug
Winkel zwischen 2 Ebenen: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Mo 23.05.2011
Autor: LadyVal

hey, vielen dank fuer Deine antwort, die ich im augenblick nur kurz querlesen konnte.
an dieser stelle sei aber vorausgeschickt: ich habe mich tatsaechlich vertippt:/ es muss heißen: "bestimmen Sie alle ebenen, die MIT der Ebene.."
PARDON
ueber den Rest, was Du geschrieben hast, denke ich heute abend scharf nach, sobald ich etwas zeit habe. vielleicht habe ich glueck und Du bist fuer die eine oder andere rueckfrage nochmal fuer mich verfuegbar? ;-)
danke in jedem fall schon einmal!
vlg LV

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de