www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Winkelfunktion auflösen arcsin
Winkelfunktion auflösen arcsin < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkelfunktion auflösen arcsin: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 So 14.12.2008
Autor: newday

Hab mal die Winkelfunktion cos(arcsin(x)) und möchte diese auflösen. Laut Rechner ist es [mm] \wurzel{1-x^2} [/mm] nur wie kommt man darauf händisch? muss es ja wohl einen "Trick" geben da ich mit Additionstheorem nur auf -sin(arccos(x)) komme und vor dem genau gleichen Problem stehe!

        
Bezug
Winkelfunktion auflösen arcsin: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 So 14.12.2008
Autor: Teufel

Hallo!

Dazu kannst du die Formel sin²z+cos²z=1 ranziehen.

Daraus folgt dann z.B. [mm] cosz=\wurzel{1-sin²z} [/mm] (zumindest für cosz [mm] \ge [/mm] 0). Wenn du jetzt z:=arcsin(x) setzt, dann erhälst du eine deiner gewünschten Formeln! Mit der anderen ist es dann das selbe Prinzip.

[anon] Teufel

Bezug
                
Bezug
Winkelfunktion auflösen arcsin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:36 So 14.12.2008
Autor: newday

Danke, versteh jetzt wie das funktioniert!

Bezug
        
Bezug
Winkelfunktion auflösen arcsin: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 So 14.12.2008
Autor: Al-Chwarizmi


> Hab mal die Winkelfunktion cos(arcsin(x)) und möchte diese
> auflösen. Laut Rechner ist es [mm]\wurzel{1-x^2}[/mm] nur wie kommt
> man darauf händisch? muss es ja wohl einen "Trick" geben da
> ich mit Additionstheorem nur auf -sin(arccos(x)) komme und
> vor dem genau gleichen Problem stehe!


hi newday,

Schau dir das Ganze am Einheitskreis in der x-y-Ebene an !
Ich schreibe die Formel lieber mit der Variablen y statt mit x.

Für eine beliebige Zahl  y [mm] \in [/mm] [-1;+1]  ist  arcsin(y) derjenige
Winkel  [mm] \varphi \in [-\bruch{\pi}{2};\bruch{\pi}{2}] [/mm] mit [mm] sin(\varphi)=y, [/mm]
also derjenige Winkel, der zum Punkt P(x/y) auf der rechten
Hälfte des Einheitskreises mit der gegebenen y-Koordinate
gehört. Betrachte nun das Dreieck OP'P mit O(0/0), P'(x/0)
und P(x/y). Es hat bei O den Winkel [mm] \varphi, [/mm] und es ist

        [mm] cos(arcsin(y))=cos(\varphi)=\bruch{\overline{OP'}}{\overline{OP}}=\bruch{x}{1}=x [/mm]

Und wie berechnet man x, wenn y gegeben ist ? Klar,
mit Pythagoras. Da [mm] x\ge [/mm] 0 für alle Punkte auf dem
betrachteten Halbkreis ist, gibt es bei der Wurzel auch
kein Vorzeichenproblem, und wir haben:

       [mm] cos(arcsin(y))=\wurzel{1-y^2} [/mm]    für alle y [mm] \in [/mm] [-1;+1]


LG



Bezug
                
Bezug
Winkelfunktion auflösen arcsin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:51 So 14.12.2008
Autor: newday

thx für die weiterführende Info!

Für mich sind Winkelfunktionen (die über sin cos tan hinausgehen) eigentlich ein spanisches Dorf deswegen reicht es mir mal in eine Formel einzusetzen und dann ein Ergebnis zu erhalten. Hab auch nie verstanden warum arcsin(x) nicht einfach [mm] \bruch{1}{sin(x)} [/mm] ist. Wäre eigentlich viel einfacher so, ist aber leider eben nicht...

Bezug
                        
Bezug
Winkelfunktion auflösen arcsin: Kaffeesatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 So 14.12.2008
Autor: Al-Chwarizmi


> thx für die weiterführende Info!
>  
> Für mich sind Winkelfunktionen (die über sin cos tan
> hinausgehen) eigentlich ein spanisches Dorf deswegen reicht
> es mir mal in eine Formel einzusetzen und dann ein Ergebnis
> zu erhalten.

Als Student der Naturwissenschaften wäre es für dich
trotzdem ein lohnendes (und nach meiner bescheidenen
Ansicht notwendiges) Ziel, die Formeln, mit denen du
arbeitest, tatsächlich auch verstehen zu lernen.
Ich verspreche dir, dass der Lohn dafür grösser sein
wird, als der Aufwand, den du nur einmal leisten musst.

> Hab auch nie verstanden warum arcsin(x) nicht
> einfach [mm]\bruch{1}{sin(x)}[/mm] ist. Wäre eigentlich viel
> einfacher so, ist aber leider eben nicht...

Mit gleichem Recht könntest du fragen, warum
man sich mit Quadratwurzeln herumschlagen soll,
es wäre doch viel einfacher, statt [mm] \wurzel{x} [/mm] einfach
[mm] \bruch{1}{x^2} [/mm] zu nehmen ...


Mathematische Formeln kann man eben nicht einfach
so frei erfinden, sondern sie müssen in vielfältigster
Weise zusammenpassen. Wäre dies anders, so wäre
Mathematik absolut nutzlos, etwa so wie Kaffeesatzlesen.


Al-Chwarizmi



Bezug
                                
Bezug
Winkelfunktion auflösen arcsin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:18 So 14.12.2008
Autor: Teufel

Hey!

Perfekte Ergänzung. :P

[anon] Teufel

Bezug
                                
Bezug
Winkelfunktion auflösen arcsin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 So 14.12.2008
Autor: newday

Eigentlich wäre ich ja an Mathematik sogar etwas interessiert nur leider kommt sie zu kurz da ich in meinem Studium nur (oder zum Glück ;) ) 2 Semester Mathe habe. Neben Mathe konzentriere ich mich lieber auch auf die Hauptstudium-LVA's was ja der Grund für meine Studienwahl war. Die Vorlesung in Mathe ist langweilig (ich weiß das ist sehr subjektiv aber ein sehr trockener Vortrag ist es aufjedenfall) und die Übungen dazu sind mehr oder weniger Abschreibübungen, da man sie ja sowieso nicht so einfach lösen kann, auch nach mehreren Stunden überdenken schafft man die Beispiele (oftmals) nicht.

Was dazukommt ist, dass es einfach auf unserer Uni keine Aufbaukurse für Mathematik gibt und somit alles vorausgesetzt wird was in der Schule "angeblich" Grundstoff war (jede Schule sieht das etwas anders was dieser angebliche "Grundstoff" sein soll).

Bezug
                                        
Bezug
Winkelfunktion auflösen arcsin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 So 14.12.2008
Autor: Al-Chwarizmi


> Eigentlich wäre ich ja an Mathematik sogar etwas
> interessiert     [daumenhoch]

> nur leider kommt sie zu kurz da ich in meinem
> Studium nur 2 Semester Mathe habe.

      ja, da spart der Staat doch wohl am falschen Ort,
      wenn man bedenkt, welch zentrale Rolle Mathematik
      in den Naturwissenschaften spielt

> Neben Mathe konzentriere ich mich lieber auch auf die
> Hauptstudium-LVA's was ja der Grund für meine Studienwahl
> war.

      das können wir alle irgendwie nachvollziehen

> Die Vorlesung in Mathe ist langweilig (ich weiß das
> ist sehr subjektiv aber ein sehr trockener Vortrag ist es
> aufjedenfall)

      das müsste eigentlich nicht sein, denn man kann
      auch Mathe so rüberbringen, dass sie - nebst viel
      Arbeit - auch noch Spass macht

> und die Übungen dazu sind mehr oder weniger
> Abschreibübungen, da man sie ja sowieso nicht so einfach
> lösen kann, auch nach mehreren Stunden überdenken schafft
> man die Beispiele (oftmals) nicht.

      versuche trotzdem, dich nicht nur aufs Abschreiben
      zu verlegen, sondern mach' in einer Gruppe mit,
      wo ihr euch gegenseitig unterstützen könnt !

> Was dazukommt ist, dass es einfach auf unserer Uni keine
> Aufbaukurse für Mathematik gibt und somit alles
> vorausgesetzt wird was in der Schule "angeblich" Grundstoff
> war (jede Schule sieht das etwas anders was dieser
> angebliche "Grundstoff" sein soll).

     umso besser, dass es da noch solche Anlaufstellen
     wie den MatheRaum gibt, wo eine ganze Reihe qualifizierter
     Leute sich darum bemühen, bei Fragen zur Mathe
     behilflich zu sein ...


LG    al-Chwarizmi


Bezug
                        
Bezug
Winkelfunktion auflösen arcsin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:17 So 14.12.2008
Autor: Teufel

Auf dem Taschenrechner steht zwar [mm] sin^{-1}x, [/mm] aber hier ist wirklich nicht damit [mm] \bruch{1}{sinx} [/mm] gemeint, sondern arcsinx.

Die Umkehrfunktion kannst du gut anschaulich daran erkennen, dass sie aus der Ausgangsfunktion durch Spiegelung an der Geraden y=x hervorgeht. Manche funktionen kann man auch nicht komplett umkehren, wie z.B. bei f(x)=x² und [mm] f^{-1}(x)=\wurzel{x}. [/mm] Hier wurde nur die rechte Hälfte der Parabel an y=x gespiegelt und man erhält die Wurzelfunktion.

Und wenn du die jetzt [mm] g^{-1}(x)=\bruch{1}{sinx} [/mm] zeichnen würdest, würdest du sehen, dass die Funktion ganz anders als eine Spiegelung von g(x)=sinx.

[Dateianhang nicht öffentlich]
Richtige Umkehrfunktion ist grün, die falsche rot. :)

Auch wenn du nicht direkt danach gefragt hast, vielleicht hilft es dir ja.

Anmerkung: sinx wurde z.B. nur im bereich von [mm] -\bruch{\pi}{2} [/mm] bis [mm] \bruch{\pi}{2} [/mm] gespiegelt.

[anon] Teufel

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                
Bezug
Winkelfunktion auflösen arcsin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:29 So 14.12.2008
Autor: newday

erstmal thx für die mühe!
Ich kann mir das ganze jetzt auch besser vorstellen, und du meinst der srcsin ist von [mm] +-\bruch{\pi}{2}? [/mm]
sin ist ja länger gezeichnet...trotzdem eine sehr schöne Graphik.

Bezug
                                        
Bezug
Winkelfunktion auflösen arcsin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:15 So 14.12.2008
Autor: Teufel

Hmm ja, die y-Werte von arcsinx gehen sozusagen von [mm] -\bruch{\pi}{2} [/mm] bis [mm] \bruch{\pi}{2}. [/mm] Was gleichbedeutend mit -90° bis 90° im Gradmaß wäre. Deshalb kriegst du mit dem Taschenrechner und [mm] sin^{-1}x [/mm] auch immer nur einen Winkel in dem Bereich raus.

Für Umkehrfunktionen gilt auch immer: Der Wertebereich der Ausgangsfunktion ist der Definitionsbereich der Umkehrfunktion und der Definitionsbereich der Ausgangsfunktion ist der Wertebereich der Umkehrfunktion.

Oder kurz: [mm] D_f=W_{f^{-1}} [/mm] und [mm] W_f=D_{f^{-1}}. [/mm]

Daher: Wenn man f(x)=sinx im Intervall [mm] [-\bruch{\pi}{2};\bruch{\pi}{2}] [/mm] umkehrt, dann wird das der Wertebereich von [mm] f^{-1}(x)=arcsinx [/mm] sein.
Und da der Wertebereich vond er Sinusfunktion zwischen 0 und 1 liegt in dem Intervall (und auch überhaupt), ist das dann der Definitionsbereich der Arkussinusfunktion.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de