www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Wo sind die Fehler?Integration
Wo sind die Fehler?Integration < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wo sind die Fehler?Integration: Frage
Status: (Frage) beantwortet Status 
Datum: 01:18 Mo 02.05.2005
Autor: Maiko

Hallo!

Ich habe hier mal zwei von mir erstellte Aufgabenlösungen eingescannt. Leider habe ich bei beiden Aufgaben irgendwo einen Fehler drin.
Könnte das mal bitte jmd. kontrollieren?

n)  [mm] \integral_{}^{} {\bruch{1+cos(x)}{sin(x)^3} dx} [/mm]

Bei dieser Aufgabe habe ich die richtige Lösung mittels eigener Rechnung und PBZ durch den Taschenrechner gefunden. Dann wollte ich alerdings die Partialbruchrechnung per Hand nachrechnen, wobei mir ein Fehler unterlaufen sein muss?!

[]Blatt 1
[]Blatt 2

Auch bei dieser Aufgabe muss mir ein Fehler unterlaufen sein.
Bitte um Hilfe!

m)  [mm] \integral_{}^{} {\bruch{3e^{x}-e^{-x}+4}{e^{x}-e^{-x}+2} dx} [/mm]

[]Blatt 1
[]Blatt 2


        
Bezug
Wo sind die Fehler?Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Mo 02.05.2005
Autor: Paulus

Lieber Maiko

bei der ersten Aufgabe erübrigt sich eine Partialbruchzerlegung vollends, weshalb eine Suche nach Fehlern reine Zeitverschwendung ist.

Du hattest ja:

[mm] $2*\integral{\bruch{2*(1+t^2)^2}{8t^3*(1+t^2)}\, dt}$ [/mm]

Hier kürzt sich doch [mm] $(1+t^2)$ [/mm] weg, und es bleibt übrig:

[mm] $\bruch{1}{2}*\integral{\bruch{1+t^2}{t^3}\, dt} =\bruch{1}{2}*\integral{(\bruch{1}{t^3}+\bruch{1}{t})\, dt}$ [/mm]

In der 2. Aufgabe sehe ich keinen Fehler, ausser dass du das $dw_$ beim Integrieren weggelassen hast. Warum glaubst du denn, einen Fehler zu haben? Man kann natürlch am Schluss noch etwas weiterrechnen und zum Beispiel folgendes Gesetz anwenden:

[mm] $\ln [/mm] a + [mm] \ln [/mm] b = [mm] \ln [/mm] (a*b)$

resp.

[mm] $\ln [/mm] a - [mm] \ln [/mm] b = [mm] \ln (\bruch{a}{b})$ [/mm]

Mit lieben Grüssen

Paul

Bezug
                
Bezug
Wo sind die Fehler?Integration: Frage
Status: (Frage) beantwortet Status 
Datum: 14:22 Mi 04.05.2005
Autor: Maiko

Hey!

Das Problem bei der ersten Aufgabe habe ich erkannt. Hätte ich selber sehen müssen, dass sich das wegkürzt. Naja, jetzt habe ich es ja.

Bei der zweiten Aufgabe muss mir aber irgendwo ein Fehler unterlaufen sein, da als Ergebnis folgendes rauskommen muss:

[mm] ln|e^{3x}+2e^{2x}-e^{x}| [/mm] + C

Bitte um Hilfe!

Bezug
                        
Bezug
Wo sind die Fehler?Integration: Fehler dw=dx
Status: (Antwort) fertig Status 
Datum: 15:46 Mi 04.05.2005
Autor: leduart

Hallo Maiko
in der 2. Zeile ,Blatt 1, Aufg.2 ist ein Fehler. du ersetzest einfach dx durch dw aber dw=w*dx.
Ich hab dann nicht weiter nachgesehen.
Gruss leduart

Bezug
                                
Bezug
Wo sind die Fehler?Integration: Fehler entlarvt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Mi 04.05.2005
Autor: Maiko

Danke leduart!

An diesem kleinem Schusselfehler hing es.

Ich habs nun hingekriegt.

Vielen Dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de