www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Würfel - günstige Fälle
Würfel - günstige Fälle < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfel - günstige Fälle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Mi 23.12.2009
Autor: sTuDi_iDuTs

Aufgabe
Wie groß ist die Wahrscheinlichkeit bei 4 Würfen zweimal die vier zu werfen?

Hallo zusammen,
mein Nachhilfeschüler hat diese Aufgabe bekommen und ich konnte ihm die Frage nicht beantworten, warum die Anzahl der günstigen Fälle 121 ist.
Die Anzahl der möglichen Fälle ist [mm] 6^4 [/mm] = 1296
Kann mir jemand verraten wie ich auf die Zahl 121 komme?
Vielen Dank!


        
Bezug
Würfel - günstige Fälle: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Mi 23.12.2009
Autor: ms2008de

Hallo,
> Wie groß ist die Wahrscheinlichkeit bei 4 Würfen zweimal
> die vier zu werfen?
>  Hallo zusammen,
> mein Nachhilfeschüler hat diese Aufgabe bekommen und ich
> konnte ihm die Frage nicht beantworten, warum die Anzahl
> der günstigen Fälle 121 ist.
>  Die Anzahl der möglichen Fälle ist [mm]6^4[/mm] = 1296
>  Kann mir jemand verraten wie ich auf die Zahl 121 komme?
>  Vielen Dank!
>  

Auf die Zahl 121 kommt man gar nicht, denn sie ist falsch. Woher kommt denn die Zahl?
Also normalerweise kann man hier einfach über die Binomialverteilung die Wahrscheinlichkeit ausrechnen, das wäre: [mm] \vektor{4 \\ 2}*(\bruch{1}{6})^2*(\bruch{5}{6})^2 [/mm] = [mm] \bruch{25}{216} [/mm] = [mm] \bruch{150}{1296}, [/mm] also gibt es 150 günstige Fälle.
Falls dein Nachhilfeschüler die Binomialverteilung noch nicht kennt, muss man es wohl über ein Baumdiagramm lösen: [mm] \bruch{1}{6}*\bruch{1}{6}*\bruch{5}{6}*\bruch{5}{6}+ \bruch{1}{6}*\bruch{5}{6}*\bruch{5}{6}*\bruch{1}{6}+\bruch{1}{6}*\bruch{5}{6}*\bruch{1}{6}*\bruch{5}{6}+\bruch{5}{6}*\bruch{1}{6}*\bruch{1}{6}*\bruch{5}{6}+\bruch{5}{6}*\bruch{1}{6}*\bruch{5}{6}*\bruch{1}{6}+\bruch{5}{6}*\bruch{5}{6}*\bruch{1}{6}*\bruch{1}{6} =\bruch{150}{1296}, [/mm]
wobei hier die [mm] \bruch{1}{6} [/mm] bzw [mm] \bruch{5}{6} [/mm] die Einzelwahrscheinlichkeit darstellt im jeweiligen eine 4, bzw. keine 4 zu werfen.

Viele Grüße und frohe Weihnachten!

Bezug
                
Bezug
Würfel - günstige Fälle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 Mi 23.12.2009
Autor: sTuDi_iDuTs

Danke für die schnelle Antwort!
Die Lösung kam vom Lehrer, dieser hat allerdings auch nicht erklärt, warum da 121 Möglichkeiten raus kommen...
Nachdem ich die Lösung an meinen Schüler weiter gegeben habe, hat er mir erzählt, dass es nicht ein Würfel ist, sondern zwei Würfel, die zwei mal geworfen werden... und somit wäre auch das Geheimnis um die 121 gelöst =)
[mm] P(W_1 $\cap$ W_2)= P(W_1)*P(W_2) [/mm] = (1- P(keine [mm] 4))^2 [/mm] = [mm] (1-(5/6)^2)^2 [/mm] = 121/1296

Bezug
                        
Bezug
Würfel - günstige Fälle: korrekte Aufgabenstellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:13 Mi 23.12.2009
Autor: Al-Chwarizmi


> Danke für die schnelle Antwort!
>  Die Lösung kam vom Lehrer, dieser hat allerdings auch
> nicht erklärt, warum da 121 Möglichkeiten raus kommen...
>  Nachdem ich die Lösung an meinen Schüler weiter gegeben
> habe, hat er mir erzählt, dass es nicht ein Würfel ist,
> sondern zwei Würfel, die zwei mal geworfen werden... und
> somit wäre auch das Geheimnis um die 121 gelöst =)
> [mm]P(W_1[/mm]  [mm]\cap[/mm] [mm]W_2)= P(W_1)*P(W_2)[/mm] = (1- P(keine [mm]4))^2[/mm] =
> [mm](1-(5/6)^2)^2[/mm] = 121/1296


In diesem Fall war aber die Aufgabenstellung nicht
bloß ungenügend, sondern total unbrauchbar.
Richtig sollte sie zum Beispiel etwa so lauten:

"Man wirft zwei Spielwürfel zweimal. Wie groß ist
die Wahrscheinlichkeit, dass in jedem der beiden
Doppelwürfe mindestens eine Vier auftritt ?"


Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de