www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Würfel Wahrscheinlichkeit
Würfel Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfel Wahrscheinlichkeit: Korrektur
Status: (Frage) beantwortet Status 
Datum: 09:00 Do 25.08.2011
Autor: Brice.C

Aufgabe
a) Wie groß ist die Wahrscheinlichkeit, dass bei einem Wurf mit drei Würfeln
mindestens 15 Augen gewürfelt werden?

b) Wie groß ist die Wahrscheinlichkeit, dass bei einem Wurf mit drei Würfeln 15 Augen gewürfelt werden?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo liebe Forum Mitglieder!

Brauche ein bisschen Unterstützung, da ich zwar was gerechnet habe, aber nicht sicher bin ob es stimmt.

Weiss jemand wie man die Aufgabe mathematisch lösen kann, ohne probier verfahren und abzählen?


Mein Ansatz:


bei a)

3 Würfel, und mindestens 15 Augen würfeln

p=1/6 und die Laplace regel kann man anwenden: Laplace = [mm] \frac{Anz. günstige Fälle}{Anz. mögliche Fälle} [/mm]

Anzahl mögliche Fälle = [mm] 6^3 [/mm] = 216

Mindestens bedeutet, entweder 16,17,18 Augen.




Folgendes habe ich herausgefunden:

Augensumme > 15 gibt es 4 Kombinationen

1.)4 6 6 (3 mal)
2.)5 5 6 (3 mal)
3.)5 6 6 (3 mal)
4.)6 6 6 (1 mal)

Somit erhält man : [mm] \frac{10}{216} [/mm]

Für die Augensumme < 15 kann man berechnen [mm] 1-\frac{10}{216}-\frac{10}{216}=\frac{196}{216}=\frac{49}{54} [/mm]

= 90.74%


bei b)

Für genau 15 Augen gibt es nur 3 Kombinationen:

1.) 3 6 6 (3 mal)
2.) 4 5 6 (6 mal)
3.) 5 5 5 (1 mal)

ergibt wieder [mm] \frac{10}{216}= [/mm] 4.63 %


Wie aber setze ich das mathematisch um, mit Formeln und dergleichen? Sind meine Überlegungen soweit richtig?

Was muss ich noch ergänzen?


Vielen Dank schon mal fürs durchsehen


vg Brice.C

        
Bezug
Würfel Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 Do 25.08.2011
Autor: Diophant

Hallo,

die Anzahl der möglichen Fälle hast du richtig bestimmt, wenn du deinen Wahrscheinlichkeitsraum so wählst, dass die Würfel unterschieden werden.

Du hast jedoch etwas missverstanden: mindestens 15 bedeutet, die Wahrscheinlichkeit zu berechnen, dass eine der Zahlen aus [mm] \{15;16;17;18\} [/mm] auftritt.

Jetzt hast du also die Anzahl der möglichen Kombinationen bestimmt, und dabei beachtet, dass man unterschiedliche Reihenfolgen beachten muss. Deine Vorgehensweise zu a) ist also prinzipiell richtig, bis auf die Tatsache, dass du die 15 nicht erfasst hast.

Bei der b) ist demzufalsge alles richtig.

Es gibt keine Patentrezepte für solche Abzählprobleme. Man muss eben jeweils schauen, welches kombinatorische Modell jeweils vorliegt, wobei das bei solchen Augensummengeschichten mit mehr als zwei Würfeln schon ziemlich kompliziert wird.

Gruß, Diophant

Bezug
                
Bezug
Würfel Wahrscheinlichkeit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:08 Fr 26.08.2011
Autor: Brice.C

Hallo Diophant


Danke für deine Antwort. Ja beim 2. hinsehen habe ich gemerkt das die 15 untergegangen ist. :-(

Hab mich wieder ans abzählen getan und raus bekommen das für 15 eben genau 10 Möglichkeiten existieren. Ergibt das somit 20 für Alle zusammen.


so ergibt sich :   [mm] \frac{20}{216} [/mm]

Dann muss die Rechnung neu lauten: [mm] 1-\frac{20}{216}-\frac{20}{216}= [/mm] 81.48%


Nun ist jetzt das die korrekte, definitive Lösung oder fehlt noch was?



vg Brice.C

Bezug
                        
Bezug
Würfel Wahrscheinlichkeit: Laplace-Regel
Status: (Antwort) fertig Status 
Datum: 17:23 Fr 26.08.2011
Autor: Infinit

Hallo Brice.C,
die Anwendung der Laplace-Regel langt doch vollkommen hier. Du sollst doch nicht das Ereignis ausrechnen, dass wenigstens 15 Punkte erzielt werden, sondern mindestens 15. Bei wievielen Fällen dies möglich ist, hast Du doch bestimmt, die Anzahl aller möglichen Fälle kennst Du auch.
Viele Grüße,
Infinit



Bezug
                                
Bezug
Würfel Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Fr 26.08.2011
Autor: Brice.C

Ui jetzt habe ich mich selber verwirrt :-S



Was ist jetzt die Antwort fürs a)

Bezug
                                        
Bezug
Würfel Wahrscheinlichkeit: Entwirren
Status: (Antwort) fertig Status 
Datum: 18:05 Fr 26.08.2011
Autor: Infinit

Jetzt hast Du wohl einmal zuviel um die Ecke gedacht. Übrig bleiben 20 günstige Fälle und 216 mögliche.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de