Würfelproblem < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:21 Mi 03.10.2007 | Autor: | tronjer |
Bei einem Würfelspiel soll als positives Ergebnis ein Wurf mit einer 1 oder 2 gelten. Die Wahrscheinlichkeit, dieses Ergebnis mit einem Würfel zu erzielen, ist 1/3. Wie hoch ist die Wahrscheinlichkeit bei zwei Würfeln, mindestens eine 1 oder 2 zu erzielen?
Sie ist nicht 2/3, sondern geringer, sonst wäre die Wahrscheinlichkeit z. B. bei 4 Würfeln 4/3, was nicht möglich ist. Die Wahrscheinlichkeit nähert sich mit steigender Zahl von Würfeln 1 an, wird aber nie 100 %.
Entsprechend: Wie groß ist die Wahrscheinlichkeit bei einer beliebigen Anzahl x von Würfeln, mindestens eine 1 oder 2 zu würfeln? Wie lautet die Funktion?
Danke für Eure Hilfe!
Gruß
Tronjer
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hi, tronjer,
> Bei einem Würfelspiel soll als positives Ergebnis ein Wurf
> mit einer 1 oder 2 gelten. Die Wahrscheinlichkeit, dieses
> Ergebnis mit einem Würfel zu erzielen, ist 1/3.
Richtig!
> Wie hoch ist die Wahrscheinlichkeit bei zwei Würfeln, mindestens
> eine 1 oder 2 zu erzielen?
Dazu musst Du davon ausgehen, dass die Würfel unterscheidbar sind.
Dann gibt es [mm] 6^{2} [/mm] = 36 verschiedene Ergebnisse (angefangen von (1;1) bis (6;6).)
Wie man auf verschiedenen Wegen (**) erkennen kann, gibt es darunter genau 20 mit mindestens einmal 1 oder 2.
Demnach ist die gesuchte Wahrscheinlichkeit:
P(E) = [mm] \bruch{20}{36} [/mm] = [mm] \bruch{5}{9}
[/mm]
(**) Unter den oben erwähnten Wegen ist derjenige über das Gegenereignis (keine 1 und keine 2 wird geworfen) im Hinblick auf Deine weitere Aufgabenstellung zweifellos der beste!
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:06 Mi 03.10.2007 | Autor: | tronjer |
Danke!
Ich hatte das schon mal ausgewürfelt und kam auf eine Häufigkeit von 53.3%. Das scheint ja Deine Lösung zu bestätigen. Ich probier mal, ob ich das für andere Würfelanzahlen auch rauskrieg.
Eine Formel, in die ich bei gegebenem Wunschergebnis, z. B. 1 oder 2 ist positiv oder 1, 2 oder 3 ist positiv, nur noch die Anzahl der Würfel eingeben muss, kennst Du nicht zufällig?
Gruß
Tronjer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:49 Mi 03.10.2007 | Autor: | Zwerglein |
Hi, tronjer,
wenn Du Dein ursprüngliches Problem gelöst hast, kommst Du vielleicht selbst auf eine "Formel" für die neue Frage!
mfG!
Zwerglein
|
|
|
|