www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Würfelversuch Erwartungswert
Würfelversuch Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfelversuch Erwartungswert: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 22:25 So 22.01.2006
Autor: Vielfrager

Aufgabe
Wir betrachten das Würfeln mit regelmäßigen Tetraedern (Vierflachen) mit gleichwahrscheinlichen Würfelflächen, die mit 1,2,3 und 4 beschriftet sind.

2. Das "Summenergebnis" eines gleichzeitigen Wurfs mit drei Tetraedern ist die Summe aller sichtbaren Würfelflächen. (Beachten Sie: Bei einem Tetraederwurf sind - je Würfel - drei Flächen sichtbar und nur die unten liegende Fläche nicht.) Definieren Sie eine geeignete Zufallsgröße (Zufallsvariable) [mm] X_{S} [/mm], die dieses Summenergebnis modelliert. Wie lautet der Erwartungswert des Summenergebnisses [mm] X_{S} [/mm] ?

Also hat jemand einen Tipp für die Lösung dieser Aufgaben. Bis jetzt bin ich so weit gekommen:

Mir ist klar, dass die Summe jedes Würfels der Gesamtaugensumme (10) abzüglich des nicht sichtbaren (unten liegenden) Feldes entspricht. Daraus habe ich eine Zufallsvariable abgeleitet mit den Werten der verdeckten Felder der drei Würfel [mm] v_{1}, v_{2}, v_{3} [/mm] : [mm] X_{ (v_{1},v_{2},v_{3}) } = 30 - ( v_{1} + v_{2} + v_{3} ) [/mm]

Um nun den Erwartungswert zu erhalten müsste ich ja zu allen möglichen Summen der Würfelwürfe die Wahrscheinlichkeiten kennen. Mir ist klar, dass 10 verschiedene Würfelaugensummen der unten liegenden Würfelseiten möglich sind: angefangen mit 3 ( jede unten liegende Würfelseite zeigt 1) bis maximal 12 (jede unten liegende Würfelseite zeigt 4).

Ich bin davon überzeugt, dass die Verteilung der Wahrscheinlichkeiten auf die einzelnen Summen symmetrisch ist, das also z.B. die Summen 7 und 8 die höchsten Wahrscheinlichkeiten haben, und das daher der Erwartungswert genau in der Mitte liegt (7.5).

Aber wie kann ich das rechnerisch belegen? Kurzum: Wie bekomme ich die Wahrscheinlichkeiten der einzelnen 10 Summen, die ich ja zur Berechnung des Erwartungswertes benötige.... Es will mir nichts einfallen, nicht mal ein kombinatorisches Argument, das es mir ermöglicht, die Wahrscheinlichkeiten irgendwie zu berechnen... Ich bin euch für jeden Tipp dankbar.

-Diese Frage habe ich in keinem anderen Forum gestellt-

        
Bezug
Würfelversuch Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 So 22.01.2006
Autor: Stefan

Hallo Daniel!

Es gilt ja:

[mm] $X_S [/mm] = [mm] X_{S_1} [/mm] + [mm] X_{S_2} [/mm] + [mm] X_{S_3}$, [/mm]

also -da die [mm] $X_{S_i}$ [/mm] identisch verteilt sind:

[mm] $E[X_S] [/mm] = 3 [mm] \cdot \frac{1}{4} \cdot [/mm] (9+8+7+6) =3 [mm] \cdot [/mm] 7.5 = 22.5$.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de