www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Wurzel Komplexe Zahl
Wurzel Komplexe Zahl < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzel Komplexe Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 So 20.05.2012
Autor: qsxqsx

Hallo,

Ich kann es zwar beweisen, jedoch nur auf meine Art und Weise. Die Aufgabe ist aber:

Beweise, dass
[mm] \wurzel{R \pm i*J} [/mm] = [mm] \wurzel{\bruch{1}{2}*(\wurzel{R^{2} + J^{2}} + R)} \pm (i)*\wurzel{\bruch{1}{2}*(\wurzel{R^{2} + J^{2}} - R)} [/mm]

(PS: das i wurde jetzt eingefügt)

mit hilfe von
1. [mm] sin(x)^{2} [/mm] + [mm] cos(x)^{2} [/mm] = 1
2. [mm] e^{a}*e^{b} [/mm] = [mm] e^{a + b} [/mm]
3. dass immaginärteil J und Realteil R orthognal zueinander sind

Ich kann es leider nur Beweisen mit
1. sin(x/2) = [mm] \pm \wurzel{\bruch{1 - cos(x)}{2}} [/mm]
2. cos(arctan(x)) = [mm] \bruch{1}{\wurzel{1 + x^{2}}} [/mm]

Danke für Hilfe.

Grüsse

        
Bezug
Wurzel Komplexe Zahl: Plus-Minus-Orgie.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 So 20.05.2012
Autor: Helbig

Hallo,
>  
> Ich kann es zwar beweisen, jedoch nur auf meine Art und
> Weise. Die Aufgabe ist aber:
>  
> Beweise, dass
> [mm]\wurzel{R \pm i*J}[/mm] = [mm]\wurzel{\bruch{1}{2}*(\wurzel{R^{2} + J^{2}} + R)} \pm \wurzel{\bruch{1}{2}*(\wurzel{R^{2} + J^{2}} - R)}[/mm]
>  

Zunächst fehlt ein $i$ vor der zweiten großen Wurzel, also

[mm]\wurzel{R \pm i*J}[/mm] = [mm]\wurzel{\bruch{1}{2}*(\wurzel{R^{2} + J^{2}} + R)} \pm i*\wurzel{\bruch{1}{2}*(\wurzel{R^{2} + J^{2}} - R)}[/mm]

Für [mm] $0\le [/mm] J$ liefert die korrigierte Formel eine der beiden Wurzeln von $R+i*J$, für $J<0$ gar keine. Daher ist mir auch völlig schleierhaft, wie Du was beweisen konntest.

> mit hilfe von
>  1. [mm]sin(x)^{2}[/mm] + [mm]cos(x)^{2}[/mm] = 1
>  2. [mm]e^{a}*e^{b}[/mm] = [mm]e^{a + b}[/mm]
>  3. dass immaginärteil J und
> Realteil R orthognal zueinander sind

Real- und Imaginärteil sind beides reelle Zahlen, können also gar nicht orthogonal zueinander sein. Allerdings sind $i*J$ und $R$ sehr wohl orthogonal zusammen. Wie in der Formel ist das $i$ auch hier wichtig!

Tut mir leid, aber weiter kann ich hier nicht helfen, da ich nicht weiß, was Ihr schon benutzen dürft.

Grüße,
Wolfgang

Bezug
                
Bezug
Wurzel Komplexe Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:17 So 20.05.2012
Autor: qsxqsx

Danke für deine Antwort. Ja ich meinte R und iJ sind orthogonal.

Wir dürfen alles "schon" benutzen, aber wir sollen es hald hier nur auf diese eine Art und weise Zeigen.

Meine Methode wäre:

[mm] \wurzel{R + iJ} [/mm] = [mm] \wurzel{z} [/mm] = [mm] \wurzel{|z|}*e^{i \phi/2} [/mm] = [mm] \wurzel{R^{2} + J^{2}}*(cos(\phi/2) [/mm] + [mm] i*sin(\phi/2)) [/mm]

Für den Realteil gilt dann:
[mm] Re[\wurzel{R + iJ}] [/mm] = [mm] \wurzel{R^{2} + J^{2}}*cos(\phi/2) [/mm] = [mm] \wurzel{R^{2} + J^{2}}*cos(arctan(\bruch{J}{R})/2) [/mm] = [mm] \wurzel{R^{2} + J^{2}}*\wurzel{\bruch{1 + cos(arctan(\bruch{J}{R}))}{2}} [/mm] = [mm] \wurzel{R^{2} + J^{2}}*\wurzel{\bruch{1 + \bruch{1}{\wurzel{1 + (J/R)^{2}}}}{2}} [/mm] = ...

Also jetz aber ist mein Weg nicht nach dem Sollweg:(.

Grüsse

Bezug
        
Bezug
Wurzel Komplexe Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 08:19 Mo 21.05.2012
Autor: fred97

Dass da ein i fehlt hat man Dir schon gesagt. Quadriere doch einfachmal die rechte Seite von


$ [mm] \wurzel{R \pm i\cdot{}J} [/mm] $ = $ [mm] \wurzel{\bruch{1}{2}\cdot{}(\wurzel{R^{2} + J^{2}} + R)} \pm i\wurzel{\bruch{1}{2}\cdot{}(\wurzel{R^{2} + J^{2}} - R)} [/mm] $

FRED

Bezug
                
Bezug
Wurzel Komplexe Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:18 Mo 21.05.2012
Autor: qsxqsx

Ja ich sollts aber herleiten und nicht beweisen - sry falls ich mich falsch ausgedrückt habe.

Ich weiss jetzt wies gemeint war. Man vergleicht [mm] (e^{\phi/2})^{2} [/mm] mit [mm] (cos(\phi/2) [/mm] + [mm] isin(\phi/2))^{2} [/mm] und erhält so eine Relation zwischen [mm] cos(\phi/2) [/mm] und [mm] cos(\phi) [/mm] bzw. [mm] sin(\phi/2) [/mm] und [mm] sin(\phi). [/mm]

Danke für eure Hilfe.

Schönes Täglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de