www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Wurzel ziehen
Wurzel ziehen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzel ziehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Do 24.09.2009
Autor: n0rdi

Aufgabe
1. [mm] \wurzel{a^{2}} [/mm]
2. [mm] \wurzel{a^{2}+b^{2}} [/mm]
3. [mm] \wurzel{a^{2}*b^{2}} [/mm]
4. [mm] \wurzel{(a+b)^{2}/4} [/mm]
5. [mm] \wurzel{(a+b)^{2}/4 -1} [/mm]
6. [mm] \wurzel{(a^{2}+b^{2})^{2}/(4a^{2}+b^{2})+1} [/mm] oder 6. [mm] \wurzel{(a+b)^{2}/(4a^{2}+b^{2})+1} [/mm]
7. [mm] \wurzel{(a^{2}+b^{2})^{2}/(4a^{2}+b^{2})-1} [/mm]

Hallo Leute,
meine Frage bzw. Problem ist etwas allgemeiner glaube ich.
Und zwar geht es um das Verständnis, wann ich die Wurzel ziehen darf. Generell darf man in Summen und Differenzen nie die Wurzel ziehen (Fall 2).
So in Fall 1,3,4 darf man die Wurzel komplett ziehen.
Fall 2 ist mir klar warum nicht, aber das Problem liegt eher in Fall 5,6,7.
Im Fall 7 kann ich komplett die Wurzel ziehen, in Fall 5 und 6 jedoch nicht, obwohl nur anstatt -1 eine +1 steht (Fall 6 I).

Ich kann die 1 doch auf den Bruch bringen, indem ich sie mit dem Nenner malnehme... Muss ich aber dann erst alles ausmultiplizieren??
Man hat mir immer gesagt, unter der Wurzel sollte man Produkte und Binome etc stehen lassen...

Ich weiß nicht, ob Ihr mein Problem versteht, aber ich hoffe es.
Danke für Euer Bemühen schon mal

MfG

n0rdi


        
Bezug
Wurzel ziehen: MatheBank
Status: (Antwort) fertig Status 
Datum: 18:24 Do 24.09.2009
Autor: informix

Hallo n0rdi,

> 1. [mm]\wurzel{a^{2}}[/mm]
>  2. [mm]\wurzel{a^{2}+b^{2}}[/mm]
>  3. [mm]\wurzel{a^{2}*b^{2}}[/mm]
>  4. [mm]\wurzel{(a+b)^{2}/4}[/mm]
>  5. [mm]\wurzel{(a+b)^{2}/4 -1}[/mm]
>  6.
> [mm]\wurzel{(a^{2}+b^{2})^{2}/(4a^{2}+b^{2})+1}[/mm] oder 6.
> [mm]\wurzel{(a+b)^{2}/(4a^{2}+b^{2})+1}[/mm]
>  7. [mm]\wurzel{(a^{2}+b^{2})^{2}/(4a^{2}+b^{2})-1}[/mm]
>  Hallo Leute,
>  meine Frage bzw. Problem ist etwas allgemeiner glaube
> ich.

Dann lies zunächst mal in unserer MBMatheBank: MBWurzel
Da Wurzeln auch als MBPotenzen geschrieben werden können, gelten auch hier die MBPotenzgesetze.

>  Und zwar geht es um das Verständnis, wann ich die Wurzel
> ziehen darf. Generell darf man in Summen und Differenzen
> nie die Wurzel ziehen (Fall 2).
>  So in Fall 1,3,4 darf man die Wurzel komplett ziehen.
>  Fall 2 ist mir klar warum nicht, aber das Problem liegt
> eher in Fall 5,6,7.
>  Im Fall 7 kann ich komplett die Wurzel ziehen, in Fall 5
> und 6 jedoch nicht, obwohl nur anstatt -1 eine +1 steht
> (Fall 6 I).
>  
> Ich kann die 1 doch auf den Bruch bringen, indem ich sie
> mit dem Nenner malnehme... Muss ich aber dann erst alles
> ausmultiplizieren??
>  Man hat mir immer gesagt, unter der Wurzel sollte man
> Produkte und Binome etc stehen lassen...
>  
> Ich weiß nicht, ob Ihr mein Problem versteht, aber ich
> hoffe es.
>  Danke für Euer Bemühen schon mal
>  

Löse mal selbst die Wurzeln mit den oben genannten Gesetzen, dann schaun wir weiter...


Gruß informix

Bezug
                
Bezug
Wurzel ziehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Do 24.09.2009
Autor: n0rdi

1. [mm] \wurzel{a^{2}} [/mm]
2. [mm] \wurzel{a^{2}+b^{2}} [/mm]
3. [mm] \wurzel{a^{2}*b^{2}} [/mm]
4. [mm] \wurzel{(a+b)^{2}/4} [/mm]
5. [mm] \wurzel{(a+b)^{2}/4 -1} [/mm]
6. [mm] \wurzel{(a^{2}+b^{2})^{2}/(4a^{2}+b^{2})+1} [/mm] oder 6. [mm] \wurzel{(a+b)^{2}/(4a^{2}+b^{2})+1} [/mm]
7. [mm] \wurzel{(a^{2}+b^{2})^{2}/(4a^{2}+b^{2})-1} [/mm]

zu 1. [mm] a^{2/2} [/mm] = a

zu 2. [mm] \wurzel{a^{2}+b^{2}} [/mm] = [mm] (a^{2}+b^{2})^{1/2} [/mm] mehr kann man dort nicht vereinfachen...

zu 3. [mm] \wurzel{a^{2}*b^{2}} [/mm] = [mm] a^{2/2}*b^{2/2}=a*b [/mm]

zu 4.  [mm] \wurzel{(a+b)^{2}/4} [/mm] = [mm] ((a+b)^{2}/2^{2})^{1/2}= (a+b)^{2/2}/2^{2/2} [/mm] = (a+b)/2

zu 5. [mm] \wurzel{(a+b)^{2}/4 -1} [/mm] = [mm] (\bruch{(a+b)^{2}-2^{2}}{2^{2}})^{1/2} [/mm] = [mm] \bruch{1}{2}*((a+b)^{2}-2^{2})^{1/2} [/mm] Nun habe ich eine Differenz, kann man da noch sinnvoll vereinfachen?

zu 6. das gleiche wie bei 5. oder?

zu 7. [mm] \wurzel{\bruch{(a^{2}+b^{2})^{2}}{4a^{2}+b^{2}} -1} [/mm] = [mm] (a^{2}+b^{2})^{2} \wurzel{\bruch{1}{4a^{2}+b^{2}}-1} [/mm] = [mm] (a^{2}+b^{2})^{2} \wurzel{\bruch{1-4a^{2}-b^{2}}{4a^{2}+b^{2}}} [/mm] und dann?
oder:
  [mm] \wurzel{\bruch{(a^{2}+b^{2})^{2}}{4a^{2}+b^{2}} -1} [/mm] = [mm] \bruch{1}{2a+b} \wurzel{ (a^{2}+b^{2})^{2}-1} [/mm] und dann?




Bezug
                        
Bezug
Wurzel ziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 Do 24.09.2009
Autor: hannahmaontana

hi,
1.-4. ist schonmal soweit richtig.

> zu 5. [mm]\wurzel{(a+b)^{2}/4 -1}[/mm]

soll das [mm] \wurzel{\bruch{(a+b)^{2}}{4 -1}} [/mm]

oder [mm] \wurzel{\bruch{(a+b)^{2}}{4}-1} [/mm] heißen?

7. kann man glaube nicht weiter vereinfachen

Bezug
                                
Bezug
Wurzel ziehen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Do 24.09.2009
Autor: Herby

Hallo,

egal wie es heißt, du hast bei 5-7 überall eine Summe bzw. Differenz und kannst nicht mehr vereinfachen.


Lg
Herby

Bezug
                                
Bezug
Wurzel ziehen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Do 24.09.2009
Autor: chrisno

Da fehlt noch etwas. Setz mal $a = -1$.

Bezug
                                        
Bezug
Wurzel ziehen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:37 Do 24.09.2009
Autor: Herby

Hallo Chrisno,

da hier die Buchstaben a und b verwendet werden, gehe ich mal von den natürlichen Zahlen aus.


Liebe Grüße
Herby

Bezug
                        
Bezug
Wurzel ziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Do 24.09.2009
Autor: Herby

Hallo,

> 1. [mm]\wurzel{a^{2}}[/mm]
>  2. [mm]\wurzel{a^{2}+b^{2}}[/mm]
>  3. [mm]\wurzel{a^{2}*b^{2}}[/mm]
>  4. [mm]\wurzel{(a+b)^{2}/4}[/mm]
>  5. [mm]\wurzel{(a+b)^{2}/4 -1}[/mm]
>  6.
> [mm]\wurzel{(a^{2}+b^{2})^{2}/(4a^{2}+b^{2})+1}[/mm] oder 6.
> [mm]\wurzel{(a+b)^{2}/(4a^{2}+b^{2})+1}[/mm]
>  7. [mm]\wurzel{(a^{2}+b^{2})^{2}/(4a^{2}+b^{2})-1}[/mm]
>  
> zu 1. [mm]a^{2/2}[/mm] = a
>  
> zu 2. [mm]\wurzel{a^{2}+b^{2}}[/mm] = [mm](a^{2}+b^{2})^{1/2}[/mm] mehr kann
> man dort nicht vereinfachen...
>  
> zu 3. [mm]\wurzel{a^{2}*b^{2}}[/mm] = [mm]a^{2/2}*b^{2/2}=a*b[/mm]
>  
> zu 4.  [mm]\wurzel{(a+b)^{2}/4}[/mm] = [mm]((a+b)^{2}/2^{2})^{1/2}= (a+b)^{2/2}/2^{2/2}[/mm]
> = (a+b)/2
>  
> zu 5. [mm]\wurzel{(a+b)^{2}/4 -1}[/mm] =
> [mm](\bruch{(a+b)^{2}-2^{2}}{2^{2}})^{1/2}[/mm] =
> [mm]\bruch{1}{2}*((a+b)^{2}-2^{2})^{1/2}[/mm] Nun habe ich eine
> Differenz, kann man da noch sinnvoll vereinfachen?
>  
> zu 6. das gleiche wie bei 5. oder?
>  
> zu 7. [mm]\wurzel{\bruch{(a^{2}+b^{2})^{2}}{4a^{2}+b^{2}} -1}[/mm] =
> [mm](a^{2}+b^{2})^{2} \wurzel{\bruch{1}{4a^{2}+b^{2}}-1}[/mm] =
> [mm](a^{2}+b^{2})^{2} \wurzel{\bruch{1-4a^{2}-b^{2}}{4a^{2}+b^{2}}}[/mm]
> und dann?
>  oder:
>    [mm]\wurzel{\bruch{(a^{2}+b^{2})^{2}}{4a^{2}+b^{2}} -1}[/mm] =
> [mm]\bruch{1}{2a+b} \wurzel{ (a^{2}+b^{2})^{2}-1}[/mm] und dann?

Das geht beides so nicht. Allgemein:

[mm] \wurzel{\bruch{(.....)^2}{(-.,._.,-)^2}\pm 1} [/mm]

Solltes du hier irgendetwas (Zähler oder Nenner) aus der Wurzel herausholen wollen, dann musst du dieses bei [mm] \text{\red{beiden}} [/mm] Summanden machen. Beispiel: Zähler

[mm] \wurzel{\bruch{(.....)^2}{(-.,._.,-)^2}\pm 1}= [/mm]


[mm] \wurzel{(.....)^2\left[\bruch{1}{(-.,._.,-)^2}\pm \bruch{1}{\red{(.....)^2}}\right]}=(.....)*\wurzel{\bruch{1}{(-.,._.,-)^2}\pm \bruch{1}{\red{(.....)^2}}} [/mm]


Dat hilft aber nich viel für deine Zwecke.


Lg
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de