www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Wurzelfunktion
Wurzelfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:04 So 11.09.2016
Autor: Kirikkayis

Aufgabe
[mm] -(\wurzel{-6}+\wurzel{37}) [/mm]

D=[−(√−6+√37),∞)

WIe komme ich auf den Definitionsbereich ? hänge seit 2 Tagen an der aufgabe ...



Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.matheboard.de/thread.php?threadid=571202&threadview=0&hilight=&hilightuser=0&page=1]

        
Bezug
Wurzelfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 So 11.09.2016
Autor: Al-Chwarizmi


> [mm]-(\wurzel{-6}+\wurzel{37})[/mm]
>  
> D=[−(√−6+√37),∞)
>  WIe komme ich auf den Definitionsbereich ? hänge seit 2
> Tagen an der aufgabe ...
>
>
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
> [http://www.matheboard.de/thread.php?threadid=571202&threadview=0&hilight=&hilightuser=0&page=1]



Hallo

wenn du hier nicht vernünftig Klammern setzt, hat es
keinen Sinn, darauf einzugehen.
Nach Konsultation des anderen Forums, wo du deine
Frage gestellt hast, vermute ich, dass richtig wäre:

   D = [- (√(- 6+√37))  ,  ∞)

Mach dir bitte klar, WIE wichtig die zusätzlich gesetzten
Klammern dabei sind !

Mittels [mm] TE_X [/mm] geschrieben wäre das:

  $\ D\ =\ [mm] \left[ - \left(\sqrt{ -6 +\ \sqrt{37}}\ \right)\ \ ,\ \infty\ \right)$ [/mm]

Dann macht alles auch wirklich Sinn, und es kommen
nur reelle Intervallgrenzen vor.

LG  ,   Al-Chw.






Bezug
        
Bezug
Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 So 11.09.2016
Autor: M.Rex

Hallo und [willkommenmr]

Der Term, wie du ihn dort stehen hast, ist nicht definiert.

Dem verlinkten Thread entnehme ich, dass dieser Term (oder besser der Term [mm] $-\sqrt{-6+\sqrt{37}}$) [/mm] einer Gleichung zugrunde liegt, nämlich:

[mm] \sqrt{1+x\cdot\sqrt{x^{2}+12}}=1+x [/mm]

Nun geht es um den Definitionsbereich dieser Gleichung:
Dazu teile das ganze mal auf:
[mm] \sqrt{x^{2}+12} [/mm] macht kein Problem, denn [mm] x^{2}+12\ge0 [/mm] gilt immer

Bleibt also der Radikand der großen, äußeren Wurzel, also
[mm] 1+x\cdot\sqrt{x^{2}+12} [/mm]
Nun gilt:
[mm] 1+x\cdot\sqrt{x^{2}+12}\ge0 [/mm]
[mm] \Leftrightarrow x\cdot\sqrt{x^{2}+12}\ge-1 [/mm]
[mm] \Leftrightarrow \sqrt{x^{2}+12}\ge-\frac{1}{x} [/mm]

Quadrieren ergibt nun
[mm] x^{2}+12\ge-\frac{1}{x^{2}} [/mm]
[mm] \Leftrightarrow x^{4}+12x^{2}-1\ge0 [/mm]

Substitituierst du nun [mm] z=x^{2}, [/mm] bekommst du
[mm] z^{2}+12z-1\ge0 [/mm]

Diese nach unten geöffnete Parabel (in z) hat die Nullstellen [mm] z_{1}=-6+\sqrt{37} [/mm] und [mm] z_{2}=-6-\sqrt{37} [/mm]

Nur aus dem positiven [mm] z_{1} [/mm] ergeben sich nun die Nullstellen für x, also [mm] x_{1;2}=\pm\sqrt{-6+\sqrt{37}} [/mm]

Nun betrachte die Grenzwerte der Parabel 4 Grades [mm] x^{4}+12x^{2}-1. [/mm] Da sowohl für [mm] x\to\infty [/mm] als auch für [mm] x\to\infty [/mm] die Funktionswerte größer als Null sind, und zwischen den Nullstellen die Funktionswerte negativ, ergibt sich ein Definitionsbereich von
[mm] D=]-\infty;-\sqrt{-6+\sqrt{37}}]\vee[\sqrt{-6+\sqrt{37}};\infty[ [/mm]

Aber, da das Teilintervall [mm] ]-\infty;-\sqrt{-6+\sqrt{37}}] [/mm] die äußere Wurzel des Startterms [mm] \sqrt{1-x\cdot\sqrt{x^{2}+12}} [/mm] neagtiv machen würde, bleibt als Definitionsbereich der Gesamten Gleichung dann nur noch [mm] [\sqrt{-6+\sqrt{37}};\infty[ [/mm] übrig.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de