www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Wurzelkriterium
Wurzelkriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelkriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Sa 26.05.2007
Autor: Soonic

Aufgabe
Das Wurzelkriterium [mm] \wurzel[i]{\bruch{1}{i²}}=\bruch{1}{(\wurzel[i]{i})²} [/mm] strebt gegen 1, was getrennt [mm] (\wurzel[i]{i}) [/mm] zu beweisen wäre.

Konvergenz kann hier über die Abschätzung der Pratioalsummen nachgewiesen werden.

Kann mir jemand erklären, wie das gehen soll?


Danke im vorraus

soonic

        
Bezug
Wurzelkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 So 27.05.2007
Autor: angela.h.b.

Hallo,

eine Erklärung fiele um Klassen leichter, wenn man sich die Aufgabe nicht aus Gestammel zusammenreimen müßte, sondern wenn sie hier im korrekten Wortlaut gepostet wäre.

Zunächst einmal: wie kann ein Kriterium gegen irgendwas streben???


Ich reime mir die Aufgabe wie folgt zusammen:

Betrachten sollst Du die Reihe [mm] \summe_{i=1}^{\infty}\bruch{1}{i^2}. [/mm]

Zu zeigen ist die Konvergenz dieser Reihe.

Das sollst Du durch Abschätzung der Partialsummen tun, das heißt, Du sollst zeigen, daß Du eine obere Schranke C findest, so, daß

[mm] \summe_{i=1}^{N}\bruch{1}{i^2}\le [/mm] C für alle [mm] N\in \IN. [/mm]

(Warum Du das tun sollst, entnimmst Du einem Satz aus der Vorlesung, welcher den Zusammenhang zwischen Beschränkung der Partialsummen und Reihenkonvergenz liefert. Auch sind die Voraussetzungen für den Satz zu prüfen.)

Diese Folge ist also konvergent.

Zeigen sollst Du nun weiter, daß Du das mit dem Wurzelkriterium nicht herausbekommen kannst.

Hierfür sollst Du zeigen daß

[mm] \limes_{i\rightarrow\infty}\wurzel[i]{\bruch{1}{i²}}=1 [/mm] ist.

Für diesen Fall liefert das Wurzelkriterium keine Informationen über Konvergenz.

Lernen sollst Du hieran: das Wurzelkriterium ist hinreichend, aber nicht notwendig für die Konvergenz der Folge.

> Kann mir jemand erklären, wie das gehen soll?

Ich habe mich dafür entschieden, zunächst das "Was?" zu klären, und hoffe, daß Du nun erste Lösungsversuche unternehmen kannst.

Tip: zur Konvergenz der Reihe [mm] \summe_{i=1}^{\infty}\bruch{1}{i^2} [/mm] dürftest Du auch in jedem Analysislehrbuch etwas finden.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de