www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Wurzelrechnen ohne TR
Wurzelrechnen ohne TR < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelrechnen ohne TR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Di 14.09.2004
Autor: einekleine83

Ich habe diese Frage in keinem weiteren Forum gestellt.


Hallo!!
Die Aufgabenstellung lautet:
Bestimmen Sie rationale Näherungswerte für die folgenden Wurzeln ohne die Verwendung der Wurzel- oder exponetioalfunktion des Taschenrechners.
Berechnen Sie dazu mindestens zwei dezimalstellen.

A) [mm] \wurzel{49} [/mm]  dass das 7 ist weis ich selber aber in der aufgabe kommt es ja nicht auf das ergebnis an sondern auf den rechenweg.

B) wäre [mm] \wurzel{490} [/mm]  usw....

Könnt ihr mir ein paar Gedankenansätze geben wie ich diese Aufgabe "manuell" lösen kann.

danke

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Wurzelrechnen ohne TR: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Di 14.09.2004
Autor: informix

Hallo einekleine83,
[willkommenmr]
schön dass du zu uns gefunden hast.

>
> Hallo!!
>  Die Aufgabenstellung lautet:
>  Bestimmen Sie rationale Näherungswerte für die folgenden
> Wurzeln ohne die Verwendung der Wurzel- oder
> exponetioalfunktion des Taschenrechners.
>  Berechnen Sie dazu mindestens zwei dezimalstellen.
>  
> A) [mm]\wurzel{49}[/mm]  dass das 7 ist weis ich selber aber in der
> aufgabe kommt es ja nicht auf das ergebnis an sondern auf
> den rechenweg. [ok]

Da gibt es wohl nichts zu nähern, weil [mm] $7^2 [/mm] = 49$ unmittelbar richtig ist.
  

> B) wäre [mm]\wurzel{490}[/mm]  usw....

Unter usw. kann ich mir leider nicht so genau etwas vorstellen; soll das mit Vielfachen von Faktor 10 weiter gehen?

> Könnt ihr mir ein paar Gedankenansätze geben wie ich diese
> Aufgabe "manuell" lösen kann.

Es gilt: [mm] $\wurzel{490} [/mm] = [mm] \wurzel [/mm] {49*10} = [mm] 7*\wurzel{10}$; [/mm] also teilweise Wurzelziehen.
Bleibt die Frage, wie man [mm] \wurzel{10} [/mm] annähern kann.
Da kann man sich nun überlegen, zwischen welchen Quadratzahlen $10$ wohl liegt.
Denn dann wird [mm] \wurzel{10} [/mm] wohl zwischen den entsprechenden Wurzeln liegen, oder?
$9<10<16 [mm] \Rightarrow 3<\wurzel{10}<4$ [/mm]

Jetzt prüfst du, ob die Quadrate von $3,1 ; 3,2; ... 3,5; 3,6$ größer oder kleiner als 10 sind.
Dann wählst du die größte, die gerade noch unter $10$ liegt, als linke neue Grenze und die kleinste, die haarscharf über $10$ liegt als neue rechte Grenze.
Das darfst du ja auch mit dem TR machen.
Dann hast du die "richtige" Wurzel schon auf die erste Stelle hinter dem Komma bestimmt.
Dieses Verfahren kannst du fortsetzen und die zweite Stelle entsprechend bestimmen.
Zeigst du uns mal, wie's weiter geht?


Bezug
        
Bezug
Wurzelrechnen ohne TR: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Di 14.09.2004
Autor: Teletubyyy

Neben der Bestimmung der Wurzel durch Intervallschachtellung (das hat dir informix richtig erklärt), gibt es noch das sogenannte Heronverfahren, dass dir in weniger Schritten einen genaueren Wert für die Wurzel ergibt.

Für die Bestimmung von [mm] \wurzel{a} [/mm]gilt folgende Formel:
[mm] x_{i+1} = \bruch {1}{2}*(x_i + \bruch {a}{xi}) [/mm]

Das heißt nun folgendes:
Man startet mit einem belibigen Wert [mm] x_0 [/mm] ,der möglichst nahe an der gesuchten Wurzel liegt. Bei [mm] \wurzel{10} [/mm] zum Beispiel 3.
Diesen Wert setzt man dann in die Formel ein:
[mm] x_1 = \bruch{1}{2}*(3+\bruch{10}{3})= 3,166666 [/mm]

Es gilt nun immer, dass [mm] x_1 [/mm] näher an dem gesuchten Wert für [mm] \wurzel{10} [/mm] ist als [mm] x_0 [/mm] und ensprechend ist [mm] x_2 [/mm] noch genauer als [mm] x_1 [/mm] und [mm] x_3 [/mm] genauer als [mm] x_2 [/mm] ...

[mm] x_2 = \bruch{1}{2}*(3,166666+\bruch{10}{3,166666})= 3,162281[/mm]

[mm] x_3 = \bruch{1}{2}*(3,162281+\bruch{10}{3,162281})= 3,162278[/mm]

[mm] x_2 [/mm] und [mm] x_3 [/mm] stimmen jetzt bereits in 4 Nachkommastellen überein. Das heißt also, dass man durch das Heronverfahren in nur 3 Schritten             [mm] \wurzel {10} = 3,1622... [/mm] bestimmen kann!

Den Beweis das Verfahren kann ich dir hier leider nicht liefern.

Gruß Samuel



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de