www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - X~Bin(n,p) - maximiere P(X=k)
X~Bin(n,p) - maximiere P(X=k) < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

X~Bin(n,p) - maximiere P(X=k): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 So 27.01.2013
Autor: triad

Aufgabe
Sei [mm] n\in\IN [/mm] und [mm] p\in(0,1) [/mm] fest. Sei [mm] X\sim\operatorname{Bin}(n,p). [/mm] Finden Sie einen Wert k, so dass P(X=k) maximal wird.
Tipp: Betrachten Sie Quotienten für aufeinanderfolgende k.

Hallo.

Mit dem Tipp betrachtet man also den Quotienten [mm] \frac{P(X=k+1)}{P(X=k)}=\frac{\vektor{n \\ k+1}*p^{k+1}*(1-p)^{n-(k+1)}}{\vektor{n \\ k}*p^{k}*(1-p)^{n-k}}, [/mm] was man kürzen kann zu

[mm] \frac{n-k}{k+1}\frac{p}{1-p}. [/mm] Wie kann ich hiervon nun das Maximum bestimmen?

Kann mir jemand dabei helfen?

Vielen Dank
gruß triad

        
Bezug
X~Bin(n,p) - maximiere P(X=k): Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 So 27.01.2013
Autor: Diophant

Hallo triad,

> Sei [mm]n\in\IN[/mm] und [mm]p\in(0,1)[/mm] fest. Sei
> [mm]X\sim\operatorname{Bin}(n,p).[/mm] Finden Sie einen Wert k, so
> dass P(X=k) maximal wird.
> Tipp: Betrachten Sie Quotienten für aufeinanderfolgende
> k.
> Hallo.
>
> Mit dem Tipp betrachtet man also den Quotienten
> [mm]\frac{P(X=k+1)}{P(X=k)}=\frac{\vektor{n \\ k+1}*p^{k+1}*(1-p)^{n-(k+1)}}{\vektor{n \\ k}*p^{k}*(1-p)^{n-k}},[/mm]
> was man kürzen kann zu
>
> [mm]\frac{n-k}{k+1}\frac{p}{1-p}.[/mm] Wie kann ich hiervon nun das
> Maximum bestimmen?
>
> Kann mir jemand dabei helfen?

Von dem Quotienten benötigst du nicht das Maximum. Hinter dem Tipp steckt wohl folgende Idee: die Wahrscheinlichkeitsfunktion der Binomialverteilung besitzt genau ein Maximum, das darf man wohl voraussetzen. Wenn du dich mit dem Quotienten jetzt links von diesem Maximum bewegst, dann ist er größer als 1, rechts vom Maximum kleiner als 1. Mehr verrate ich jetzt aber wirklich nicht. :-)


Gruß, Diophant

Bezug
                
Bezug
X~Bin(n,p) - maximiere P(X=k): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 So 27.01.2013
Autor: triad


> Hallo triad,
>  
> > Sei [mm]n\in\IN[/mm] und [mm]p\in(0,1)[/mm] fest. Sei
> > [mm]X\sim\operatorname{Bin}(n,p).[/mm] Finden Sie einen Wert k, so
> > dass P(X=k) maximal wird.
>  > Tipp: Betrachten Sie Quotienten für aufeinanderfolgende

> > k.
>  > Hallo.

>  >

> > Mit dem Tipp betrachtet man also den Quotienten
> > [mm]\frac{P(X=k+1)}{P(X=k)}=\frac{\vektor{n \\ k+1}*p^{k+1}*(1-p)^{n-(k+1)}}{\vektor{n \\ k}*p^{k}*(1-p)^{n-k}},[/mm]
> > was man kürzen kann zu
>  >

> > [mm]\frac{n-k}{k+1}\frac{p}{1-p}.[/mm] Wie kann ich hiervon nun das
> > Maximum bestimmen?
>  >

> > Kann mir jemand dabei helfen?
>  
> Von dem Quotienten benötigst du nicht das Maximum. Hinter
> dem Tipp steckt wohl folgende Idee: die
> Wahrscheinlichkeitsfunktion der Binomialverteilung besitzt
> genau ein Maximum, das darf man wohl voraussetzen. Wenn du
> dich mit dem Quotienten jetzt links von diesem Maximum
> bewegst, dann ist er größer als 1, rechts vom Maximum
> kleiner als 1. Mehr verrate ich jetzt aber wirklich nicht.
> :-)
>  
>
> Gruß, Diophant


Das verstehe ich nicht ganz. Wenn gilt P(X=k)<P(X=k+1), dann ist der Quotient doch größer als 1 und bei P(X=k)>P(X=k+1) ist er kleiner als 1. Was bedeutet es denn mit dem Quotienten links vom Maximum zu sein? Ich möchte wissen für welches k (also nicht der Quotient sondern) P(X=k) maximal wird.

gruß triad



Bezug
                        
Bezug
X~Bin(n,p) - maximiere P(X=k): Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 So 27.01.2013
Autor: Diophant

Hallo,

schau dir doch mal irgendein Stabdiagramm der Wahrscheinlichkeitsfunktion so einer binomialverteilten ZV an, oder stelle es dir vor. Wenn man alle Werte von k=0 bis k=n durchgeht, dann wächst die Wahrscheinlichkeit zunächst bis zu ihrem Maximum an, dann fällt sie wieder. Also muss für den Quotienten (in Abhängigkeit von k!) links und rechts von diesem maximum was ( := >1 oder <1? )gelten?


Gruß, Diophant

Bezug
                                
Bezug
X~Bin(n,p) - maximiere P(X=k): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 So 27.01.2013
Autor: triad


> Hallo,
>  
> schau dir doch mal irgendein Stabdiagramm der
> Wahrscheinlichkeitsfunktion so einer binomialverteilten ZV
> an, oder stelle es dir vor. Wenn man alle Werte von k=0 bis
> k=n durchgeht, dann wächst die Wahrscheinlichkeit
> zunächst bis zu ihrem Maximum an, dann fällt sie wieder.

Ja.

> Also muss für den Quotienten (in Abhängigkeit von k!)
> links und rechts von diesem maximum was ( := >1 oder <1?
> )gelten?
>  

Angenommen, die Säule k ist die größte (also P(X=k) hat dort den höchsten Wert), dann ist der Quotient der 2 aufeinanderfolgenden k, weil die Wkeit bis dahin immer steigt, bis dahin (links vom Maximum) immer größer 1, weil man bis dahin das größere durch das kleinere teilt [mm] \frac{P(X=k+1)}{P(X=k)}. [/mm] Sobald P(X=k+1) das Maximum überschreitet, d.h. P(X=k)>P(X=k+1), wird der Quotient <1.


>
> Gruß, Diophant


Bezug
                                        
Bezug
X~Bin(n,p) - maximiere P(X=k): Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 So 27.01.2013
Autor: Diophant

Hallo triad,

deine obigen Feststellungen sind alle richtig. Jetzt musst du über eine geeignete Ungleichung versuchen, k in Abhängigkeit von n und p zu bestimmen. Das sollte machbar sein, nach den bisherigen Vorüberlegungen.


Gruß, Diophant



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de