www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Z-Moduln
Z-Moduln < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Z-Moduln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:00 Mo 25.10.2010
Autor: Salamence

Aufgabe
1) Sei [mm] N:=<\vektor{4 \\ 5 \\ 6}, \vektor{9 \\ 8 \\ 7}> [/mm] Untermodul von [mm] \IZ^{3}. [/mm]
Sei [mm] M=\IZ^{3}/N [/mm]
Bestimmen Sie den [mm] \IZ-Rang [/mm] von [mm] M/M_{tor} [/mm] sowie die Ordnung von [mm] M_{tor} [/mm]

2) Seien [mm] v_{1}, [/mm] ..., [mm] v_{n}\in\IZ^{n}, [/mm] sei [mm] A:=\vektor{v_{1}^{T} \\ ... \\ v_{n}^{T}} [/mm] und sei [mm] N:=\sum_{k=1}^{n}\IZ*v_{k} [/mm]
Zeigen Sie: [mm] \IZ^{n}/N [/mm] endlich [mm] \gdw det(A)\not=0 [/mm] und in diesem Fall [mm] |\IZ^{n}/N|=|det(A)| [/mm]

Hallo!

Also mein Tutor meinte ja, dass die beiden Aufgaben ganz einfach wären. Doch ich hab dieses ganze Modulzeugs mit Torsion und so überhaupt noch nicht verstanden. :-(

Von daher hab ich auch nicht wirklich eine Ahnung, wie ich daran gehen soll.

Kann man bei 1) ne Basis angeben und nachzählen und alle Elemente aus [mm] M_{tor} [/mm] ebenso?

Bei 2) Bedeutet das nicht einfach, dass sie linear unabhängig sind, wenn [mm] det(A)\not=0? [/mm] Ist das dann nicht ganz [mm] \IZ^{n}? [/mm] Wäre das nicht dann einelementig? Aber die Determinante kann doch auch was ganz anderes sein? Mmmh?

        
Bezug
Z-Moduln: Antwort
Status: (Antwort) fertig Status 
Datum: 07:22 Fr 29.10.2010
Autor: statler

Guten Morgen,
diese einfache Aufgabe soll ja nicht völlig ohne Antwort bleiben.
Also zu 1):

> 1) Sei [mm]N:=<\vektor{4 \\ 5 \\ 6}, \vektor{9 \\ 8 \\ 7}>[/mm]
> Untermodul von [mm]\IZ^{3}.[/mm]
>  Sei [mm]M=\IZ^{3}/N[/mm]
> Bestimmen Sie den [mm]\IZ-Rang[/mm] von [mm]M/M_{tor}[/mm] sowie die Ordnung
> von [mm]M_{tor}[/mm]

Du kannst dich z. B. an einem Beweis des Elementarteilersatzes entlanghangeln (v. d. Waerden, Algebra II) und findest, daß [mm] \vektor{4 \\ 5 \\ 6}, \vektor{1 \\ 1 \\ 1} [/mm] und [mm] \vektor{0 \\ 0 \\ 1} [/mm] eine Basis des [mm] \IZ^3 [/mm] ist und [mm] \vektor{4 \\ 5 \\ 6} [/mm] und [mm] \vektor{13 \\ 13 \\ 13} [/mm] eine von N. Damit hat der Quotient Rang 1 und die Torsion die Ordnung 13.

> 2) Seien [mm]v_{1},[/mm] ..., [mm]v_{n}\in\IZ^{n},[/mm] sei
> [mm]A:=\vektor{v_{1}^{T} \\ ... \\ v_{n}^{T}}[/mm] und sei
> [mm]N:=\sum_{k=1}^{n}\IZ*v_{k}[/mm]
>  Zeigen Sie: [mm]\IZ^{n}/N[/mm] endlich [mm]\gdw det(A)\not=0[/mm] und in
> diesem Fall [mm]|\IZ^{n}/N|=|det(A)|[/mm]

Das ist eine direkte Folge des Elementarteilersatzes.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de