www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Zahl d. Anordnung von n Elemen
Zahl d. Anordnung von n Elemen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahl d. Anordnung von n Elemen: Frage: Probiermöglichkeiten
Status: (Frage) beantwortet Status 
Datum: 18:50 So 29.05.2005
Autor: Paco

Ich brauche eure Hilfe bei folgendem Problem:

Ein Autobesitzer muss die sechs Kerzenkabel seines Sechszylinders nach einer Wäsche neu aufstecken. Wie groß ist die Wahrscheinlichkeit, dass er beim ersten Versuch genau zwei Kerzenstecker richtig anbringt?
Ist sicherlich kein Problem die Aufgabe durch probieren zu lösen, aber ich muss das System dahinter verstehen; habe übermorgen mündl. Abi (Berlin).

Es gibt auf jeden Fall 6! = 216 Möglichkeiten die Kabel anzuordnen. Ich brauche nur noch ein kombinatorisches Abzählverfahren, um die Anzahl der günstigen Ergebnisse zu finden.
Ich dachte erst ich könnte mit einem Binominalkoeffizienten arbeiten; also  [mm] \vektor{6 \\ 2} [/mm] mal  [mm] \vektor{6 \\ 4} [/mm] günstige Fälle; dies ist aber nicht richtig; mir ist jetzt auch klar, dass da ein Denkfehler dahinter steckt.
Auch der Ansatz mit 2!*4! günstigen Fälle ist falsch.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://forum.gamestar.de/gspinboard/showthread.php?t=125675

        
Bezug
Zahl d. Anordnung von n Elemen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 So 29.05.2005
Autor: Stefan

Hallo!

Gesucht ist die Anzahl aller Permutationen einer sechselementigen Menge mit $2$ Fixpunkten. Wie man dies macht, kannst du (allgemeiner) hier nachlesen. Allerdings ist das nicht trivial. Das wird knapp bis übermorgen... Naja, versuche es halt mal zu verstehen, notfalls lernst du die Formel einfach auswendig. ;-)

Liebe Grüße
Stefan

Bezug
                
Bezug
Zahl d. Anordnung von n Elemen: Weiterer link
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:05 Di 31.05.2005
Autor: Hanno

Hallo!

Ich habe kürzlich auch etwas dazu geschrieben; du kannst es dir auf http://www.Hanno-Becker.de/Sonstiges/Bernoulli_Zahlen.pdf durchlesen.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de