www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Zahlenfolgen und Konvergenz
Zahlenfolgen und Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlenfolgen und Konvergenz: Konvergenz einer Zahlenfolge
Status: (Frage) beantwortet Status 
Datum: 13:36 Do 28.12.2006
Autor: RalU

Aufgabe
Untersuchen Sie die Zahlenfolgen auf Konvergenz:

a) [mm] an=\wurzel{4n^{2}+n}-\wurzel{4n^{2}-n} [/mm]

Mein Ansatz war, den Ausruck so zu erweitern, dass man in ihm die 3. Binomische Formel anwenden kann ( [mm] (a+b)*(a-b)=a^{2}-b^{2}). [/mm]

Ich betrachte also den Ausdruck und erweitere mit [mm] \bruch{\wurzel{4n^{2}+n}+\wurzel{4n^{2}-n}}{\wurzel{4n^{2}+n}+\wurzel{4n^{2}-n}} [/mm]

Also steht dann da für meinen Grenzwert:

[mm] \limes_{n\rightarrow\infty}=(\wurzel{4n^{2}+n}-\wurzel{4n^{2}-n})*(\bruch{\wurzel{4n^{2}+n}+\wurzel{4n^{2}-n}}{\wurzel{4n^{2}+n}+\wurzel{4n^{2}-n}}) [/mm]

daraus folgt dann (wegen [mm] a^{2}-b^{2}): [/mm]

[mm] \limes_{n\rightarrow\infty}=\bruch{4n^{2}+n-4n^{2}-n-4n^{2}+n+4n^{2}-n}{\wurzel{4n^{2}+n}+\wurzel{4n^{2}-n}} [/mm]


Wenn ich das jetz weiter zusammenfasse, erhalte ich im Zähler 0.
Also wäre auch mein Grenzwert [mm] \limes_{n\rightarrow\infty}= [/mm] 0, also Endergebnis konvergent gegen 0.

allerdings weiß ich nicht, ob das korrekt ist. Wenn nicht, wo liegt mein Fehler?

        
Bezug
Zahlenfolgen und Konvergenz: Vorzeichenfehler
Status: (Antwort) fertig Status 
Datum: 13:44 Do 28.12.2006
Autor: Loddar

Hallo RalU!


Du machst einen Vorzeichenfehler bei der Anwendung der 3. binomischen Formel im Zähler:

[mm] $\left( \ \wurzel{4n^2+n}-\wurzel{4n^2-n} \ \right)*\left( \ \wurzel{4n^2+n}+\wurzel{4n^2-n} \ \right) [/mm] \ = \ [mm] \left( \ \wurzel{4n^2+n} \ \right)^2 [/mm] - [mm] \left( \ \wurzel{4n^2-n} \ \right)^2 [/mm]  \ = \ [mm] \left( \ 4n^2+n \ \right) [/mm] - [mm] \left( \ 4n^2-n \ \right) [/mm]  \ = \ [mm] 4n^2+n-4n^2 [/mm] \ [mm] \red{+} [/mm] \ n  \ = \ 2n$


Nun im Nenner $n \ = \ [mm] \wurzel{n^2}$ [/mm] ausklammern und kürzen ...


Gruß
Loddar


Bezug
                
Bezug
Zahlenfolgen und Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:42 Do 28.12.2006
Autor: RalU

Aufgabe
ok, meinen Vorzeichenfehler hab ich eingesehen. Aber mit dem kürzen hab ich Probleme.

Ich habe also nach dem Zusammenfassen zunächst da stehen:

[mm] \limes_{n\rightarrow\infty}=\bruch{2n}{\wurzel{4n^{2}+n}+\wurzel{4n^{2}-n}} [/mm]

Jetzt klammer ich, wie du sagst, [mm] \wurzel{n} [/mm] im Nenner aus:

[mm] \limes_{n\rightarrow\infty}=\bruch{2n}{\wurzel{n^{2}}*(2+\bruch{1}{n})+\wurzel{n^{2}}*(2-\bruch{1}{n})} [/mm]

weiter:

[mm] \limes_{n\rightarrow\infty}=\bruch{2n}{n*(2+\bruch{1}{n})+n*(2-\bruch{1}{n})} [/mm]

weiter:

[mm] \limes_{n\rightarrow\infty}=\bruch{2n}{2n+1+2n-1} [/mm]

weiter:
[mm] \limes_{n\rightarrow\infty}=\bruch{2n}{4n} [/mm]

weiter:
[mm] \limes_{n\rightarrow\infty}=\bruch{1}{2} [/mm]



oder muss ich zu Beginn schreiben:

[mm] \limes_{n\rightarrow\infty}=\bruch{2n}{\wurzel{n^{2}*(4+\bruch{1}{n})}+\wurzel{n^{2}*(4-\bruch{1}{n})}} [/mm]

Bezug
                        
Bezug
Zahlenfolgen und Konvergenz: Dein 2. Ansatz
Status: (Antwort) fertig Status 
Datum: 14:45 Do 28.12.2006
Autor: Loddar

Hallo RalU!


> oder muss ich zu Beginn schreiben:  [mm]\limes_{n\rightarrow\infty}=\bruch{2n}{\wurzel{n^{2}*(4+\bruch{1}{n})}+\wurzel{n^{2}*(4-\bruch{1}{n})}}[/mm]

[ok] Das sieht schon viiieeell besser aus als der andere "Rechen"weg.


Gruß
Loddar


Bezug
                                
Bezug
Zahlenfolgen und Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Do 28.12.2006
Autor: RalU

Aufgabe
ok, dann mach ich mal da weiter...

[mm] \limes_{n\rightarrow\infty}=\bruch{2n}{\wurzel{n^{2}(4+\bruch{1}{n})}+\wurzel{n^{2}(4-\bruch{1}{n})}} [/mm]

[mm] =\limes_{n\rightarrow\infty}=\bruch{2n}{n*\wurzel{(4+\bruch{1}{n})}+n*\wurzel{(4-\bruch{1}{n})}}= [/mm]

[mm] =\limes_{n\rightarrow\infty}=\bruch{2n}{2n+\wurzel{(\bruch{1}{n})}+2n-\wurzel{(\bruch{1}{n})}}= [/mm]

[mm] =\limes_{n\rightarrow\infty}=\bruch{2n}{4n} [/mm]

[mm] =\limes_{n\rightarrow\infty}=\bruch{1}{2} [/mm]

so korrekt?

Bezug
                                        
Bezug
Zahlenfolgen und Konvergenz: Fehler!
Status: (Antwort) fertig Status 
Datum: 15:40 Do 28.12.2006
Autor: Loddar

Hallo RalU!


Du kannst doch nicht einfach aus Summen und Differenzen gliedweise die Wurzel ziehen ... *grusel* (auch wenn das Endergebnis hier zufällig richtig ist).


> [mm]=\limes_{n\rightarrow\infty}=\bruch{2n}{n*\wurzel{(4+\bruch{1}{n})}+n*\wurzel{(4-\bruch{1}{n})}}=[/mm]

[mm]... \ = \ \limes_{n\rightarrow\infty}\bruch{2n}{n*\left( \ \wurzel{4+\bruch{1}{n}}+\wurzel{4-\bruch{1}{n}} \ \right)} \ = \ \limes_{n\rightarrow\infty}\bruch{2}{\wurzel{4+\bruch{1}{n}}+\wurzel{4-\bruch{1}{n}}} [/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Und nun die Grenzwertbetrachtung $n\rightarrow\infty}$ ...


Gruß
Loddar


Bezug
                                                
Bezug
Zahlenfolgen und Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Do 28.12.2006
Autor: RalU

Aufgabe
ok, gliedweise die Wurzel ziehen ist nicht in Ordnung.

am Ende steht doch da:

[mm] \limes_{n\rightarrow\infty}\bruch{2n}{n\cdot{}\left( \ \wurzel{4+\bruch{1}{n}}+\wurzel{4-\bruch{1}{n}} \ \right)} [/mm] \ = [mm] \limes_{n\rightarrow\infty}\bruch{2}{\wurzel{4+\bruch{1}{n}}+\wurzel{4-\bruch{1}{n}}} [/mm]

und weil [mm] \bruch{1}{n} [/mm] jeweils gegen 0 geht, für n-> [mm] \infty, [/mm] erhalte ich da quasi [mm] \bruch{2n}{\wurzel{4}*\wurzel{4}} [/mm] und deshalb:

[mm] \bruch{2}{4}=\bruch{1}{2} [/mm]

anders kann ich mir die Grenzwertbetrachtung hier nicht vorstellen, weil weiter vereinfachen des Ausdrucks kann man ja scheinbar nicht.

Bezug
                                                        
Bezug
Zahlenfolgen und Konvergenz: nicht ganz!
Status: (Antwort) fertig Status 
Datum: 16:12 Do 28.12.2006
Autor: Loddar

Hallo RalU!


> ok, gliedweise die Wurzel ziehen ist nicht in Ordnung.

Nein, ist es nie!!


>  am Ende steht doch da:
>  
> [mm]\limes_{n\rightarrow\infty}\bruch{2n}{n\cdot{}\left( \ \wurzel{4+\bruch{1}{n}}+\wurzel{4-\bruch{1}{n}} \ \right)}[/mm]  = [mm]\limes_{n\rightarrow\infty}\bruch{2}{\wurzel{4+\bruch{1}{n}}+\wurzel{4-\bruch{1}{n}}}[/mm]

[ok]

  

> und weil [mm]\bruch{1}{n}[/mm] jeweils gegen 0 geht, für n-> [mm]\infty,[/mm]

[ok]


> erhalte ich da quasi [mm]\bruch{2n}{\wurzel{4}*\wurzel{4}}[/mm]

[notok] Nicht ganz. Es entsteht: [mm] $\bruch{2}{\wurzel{4} \ \red{+} \ \wurzel{4}} [/mm] \ = \ [mm] \bruch{2}{2*\wurzel{4}} [/mm] \ = \ [mm] \bruch{1}{\wurzel{4}} [/mm] \ = \ [mm] \bruch{1}{2}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de