www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Zeige: Innenproduktraum
Zeige: Innenproduktraum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeige: Innenproduktraum: Beweis, Tipp
Status: (Frage) beantwortet Status 
Datum: 12:27 Mi 21.09.2011
Autor: GK13

Aufgabe
Zeigen Sie, dass jeder Innenproduktraum V auch normierter Vektorraum ist, indem Sie nachweisen, dass durch
||x|| := [mm] \wurzel{(x,x)} [/mm] , x [mm] \in [/mm] V
eine Norm auf V definiert wird.


Hey, habe eine Frage zur obigen Aufgabe.
Habe folgendermaßen angefangen:

(N1) ||x|| [mm] \ge [/mm] 0
        ||x|| = 0 <=> x=0

||x|| := [mm] \wurzel{(x,x)} \ge [/mm] 0, da (x,x) [mm] \ge [/mm] 0 [mm] \forall [/mm] x [mm] \in [/mm] V (da inneres Produkt)
[mm] \wurzel{(x,x)} [/mm] = 0 <=> x = 0, da (x,x) = 0 <=> x = 0 (da inneres Produkt)

(N2) || [mm] \alpha [/mm] x || = | [mm] \alpha [/mm] | ||x||

jetzt habe ich so angefangen:
[mm] \wurzel{(\alpha x, \alpha x)} [/mm] = [mm] \wurzel{(\alpha (x, \alpha x)}, [/mm] da inneres Produkt ( [mm] (\alpha [/mm] u + [mm] \beta [/mm] v,y) = [mm] \alpha [/mm] (u,y) + [mm] \beta [/mm] (v,y) )
und weiß jetzt nicht weiter.
Kann mir vielleicht jemand weiterhelfen?
Ein Tipp wäre super.
Auch ein Tipp zur Dreiecksungleichung wäre Klasse.
Wäre echt super, wenn jemand mir einen Tipp gäbe.

        
Bezug
Zeige: Innenproduktraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Mi 21.09.2011
Autor: fred97

Zu N2:

$ [mm] ||\alpha [/mm] x||=  [mm] \wurzel{(\alpha x, \alpha x)} [/mm] = [mm] \wurzel{|\alpha|^2*(x,x)}=|\alpha| \wurzel{(x,x)}=|\alpha|*||x||$ [/mm]

Dreiecksungleichung:  Ansatz:

   [mm] $||x+y||^2=(x+y,x+y)$ [/mm]

Multipliziere aus und benutze die Cauchy- Schwarzsche Ungl.:

                              $|(a,b)| [mm] \le [/mm] ||a||*||b||$   (a,b [mm] \in [/mm] V)



Bezug
                
Bezug
Zeige: Innenproduktraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Do 22.09.2011
Autor: GK13

Erstmal vielen Dank für die schnelle Antwort und N2 ist ja super!

zu N3 hab ich noch eine Frage:
ich habe erstmal die Cauchy Schwarzsche Ungleichung umgeformt:

[mm] |(u,v)|^{2} \le [/mm] (u,u)(v,v)
<=> |(u,v)| [mm] \le \wurzel{(u,u)}\wurzel{(v,v)} [/mm]
                       = ||u|| ||v||

Dann gings weiter:
[mm] ||x+y||^{2} [/mm]
= [mm] \wurzel{(x+y,x+y)}^{2} [/mm]
= |(x+y,x+y)|
[mm] \le \wurzel{(x+y,x+y)} \wurzel{(x+y,x+y)} [/mm]
(sei u=v=x+y)
= ||u|| ||v||

..was ja ganz gut aussieht, aber dann fiel mir auf, dass es ja jetzt mal ist und N3 ist ja ||u+v|| [mm] \le [/mm] ||u||+||v||
also hab ich wohl irgendwie den Sinn vom umformen noch nich ganz verstanden?!

EDIT:
Ich habe es jetzt noch anders gelöst:

(x+y,x+y) = (x,x)+(y,y)+(x,y)+(y,x)
= [mm] ||x||^{2}+||y||^{2}+(x,y)+(y,x) [/mm]
= [mm] ||x||^{2}+||y||^{2}+2(x,y) [/mm] (wegen Symmetrie)
[mm] \le ||x||^{2} [/mm] + [mm] ||y||^{2} [/mm] + 2 ||x|| ||y||
=
[mm] (||x||+||y||)^{2} [/mm]

Ist es so korrekt?

Bezug
                        
Bezug
Zeige: Innenproduktraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Do 22.09.2011
Autor: fred97


> Erstmal vielen Dank für die schnelle Antwort und N2 ist ja
> super!
>  
> zu N3 hab ich noch eine Frage:
>  ich habe erstmal die Cauchy Schwarzsche Ungleichung
> umgeformt:
>  
> [mm]|(u,v)|^{2} \le[/mm] (u,u)(v,v)
>  <=> |(u,v)| [mm]\le \wurzel{(u,u)}\wurzel{(v,v)}[/mm]

>              
>           = ||u|| ||v||
>  
> Dann gings weiter:
>  [mm]||x+y||^{2}[/mm]
> = [mm]\wurzel{(x+y,x+y)}^{2}[/mm]
>  = |(x+y,x+y)|
>  [mm]\le \wurzel{(x+y,x+y)} \wurzel{(x+y,x+y)}[/mm]
>  (sei u=v=x+y)
>  = ||u|| ||v||
>  
> ..was ja ganz gut aussieht,

Ne, das ist Murks.

Ich gehe mal davon aus, dass V ein reeller Raum ist (überlege Du Dir , wie Du das Folgende im komplexen Fall modifizieren mußt).

   $ [mm] ||x+y||^2=(x+y,x+y)= [/mm] (x,x)+2(x,y)+(y,y) = [mm] ||x||^2 [/mm] +2(x,y)+ [mm] ||y||^2 \le ||x||^2 [/mm] +2|(x,y)|+ [mm] ||y||^2 \le ||x||^2 [/mm] +2||x||*||y||+ [mm] ||y||^2 =(||x||+||y||)^2$ [/mm]

FRED



aber dann fiel mir auf, dass es

> ja jetzt mal ist und N3 ist ja ||u+v|| [mm]\le[/mm] ||u||+||v||
>  also hab ich wohl irgendwie den Sinn vom umformen noch
> nich ganz verstanden?!
>  
> EDIT:
>  Ich habe es jetzt noch anders gelöst:
>  
> (x+y,x+y) = (x,x)+(y,y)+(x,y)+(y,x)
>  = [mm]||x||^{2}+||y||^{2}+(x,y)+(y,x)[/mm]
>  = [mm]||x||^{2}+||y||^{2}+2(x,y)[/mm] (wegen Symmetrie)
>  [mm]\le ||x||^{2}[/mm] + [mm]||y||^{2}[/mm] + 2 ||x|| ||y||
>  =
> [mm](||x||+||y||)^{2}[/mm]
>  
> Ist es so korrekt?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de