www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Zeige Standardnormalverteilung
Zeige Standardnormalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeige Standardnormalverteilung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 16:50 So 05.05.2013
Autor: Steffen2361

Aufgabe
Hi,

Ich hätte folgende Frage an euch:

Seien [mm] −\infty \le [/mm] a < b [mm] \le \infty. [/mm] Zeige, dass:

[mm] \int_{\mu+a\sigma}^{\mu+b\sigma} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{t-\mu}{\sigma}\right)^2} \mathrm [/mm] dt  =  [mm] \int_{a}^{b} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(t\right)^2} \mathrm [/mm] dt

Danke


Ich weiß leider nicht wie ich da weiterkommen soll. Links steht doch die allgemeine Normalverteilung und rechts die Standartisierte Normalverteilung.

Sprich nehme ich für den Erwatungswert =0 und die Varianz = 1 -> [mm] N(\mu, \sigma) [/mm] =  N(0,1)

Nun setze ich dies in die Linke Seite der Gleichung ein und erhalte die Rechte Seite

Könnt ihr mir bitte hefen, stehe echt auf der Leitung

mfg
steffen

        
Bezug
Zeige Standardnormalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 So 05.05.2013
Autor: MathePower

Hallo Steffen2361,

> Hi,
>  
> Ich hätte folgende Frage an euch:
>  
> Seien [mm]−\infty \le[/mm] a < b [mm]\le \infty.[/mm] Zeige, dass:
>  
> [mm]\int_{\mu+a\sigma}^{\mu+b\sigma} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{t-\mu}{\sigma}\right)^2} \mathrm[/mm]
> dt  =  [mm]\int_{a}^{b} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(t\right)^2} \mathrm[/mm]
> dt
>  
> Danke
>  Ich weiß leider nicht wie ich da weiterkommen soll. Links
> steht doch die allgemeine Normalverteilung und rechts die
> Standartisierte Normalverteilung.
>
> Sprich nehme ich für den Erwatungswert =0 und die Varianz
> = 1 -> [mm]N(\mu, \sigma)[/mm] =  N(0,1)
>  
> Nun setze ich dies in die Linke Seite der Gleichung ein und
> erhalte die Rechte Seite
>  
> Könnt ihr mir bitte hefen, stehe echt auf der Leitung
>  


Um die Gleichheit der beiden Integrale zu  zeigen,
ist eine Substitution auszuführen.


> mfg
>  steffen


Gruss
MathePower

Bezug
                
Bezug
Zeige Standardnormalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 So 05.05.2013
Autor: Steffen2361

Ach ok danke

Ich substituire mit

u= [mm] \frac{t-\mu}{\sigma} [/mm]

Komme dann auf

[mm] $\bruch{du}{dt} [/mm] = [mm] \bruch{1}{\sigma} \rightarrow [/mm] dt = du * [mm] \sigma$ [/mm]

Dies setze ich nun in mein Intragl ein

$ [mm] \int_{\phi(\mu+a\sigma)}^{\phi(\mu+b\sigma)} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(u\right)^2} [/mm] du * [mm] \sigma \mathrm [/mm] $

Nun streicht sich das Sigma weg und noch die Grenzen ausrechnen, sprich:

[mm] \phi(\mu+a\sigma) [/mm] = [mm] \bruch{\mu+a\sigma - \mu}{\sigma} [/mm] = a

[mm] \phi(\mu+b\sigma) [/mm] = [mm] \bruch{\mu+b\sigma - \mu}{\sigma} [/mm] = b

Ergibt:

$ [mm] \int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(u\right)^2} [/mm] du  [mm] \mathrm [/mm] $

Hast du das so gemeint?

Danke

Bezug
                        
Bezug
Zeige Standardnormalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 So 05.05.2013
Autor: MathePower

Hallo Steffen2361,

> Ach ok danke
>
> Ich substituire mit
>
> u= [mm]\frac{t-\mu}{\sigma}[/mm]
>  
> Komme dann auf
>
> [mm]\bruch{du}{dt} = \bruch{1}{\sigma} \rightarrow dt = du * \sigma[/mm]
>  
> Dies setze ich nun in mein Intragl ein
>  
> [mm]\int_{\phi(\mu+a\sigma)}^{\phi(\mu+b\sigma)} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(u\right)^2} du * \sigma \mathrm[/mm]
>
> Nun streicht sich das Sigma weg und noch die Grenzen
> ausrechnen, sprich:
>  
> [mm]\phi(\mu+a\sigma)[/mm] = [mm]\bruch{\mu+a\sigma - \mu}{\sigma}[/mm] = a
>  
> [mm]\phi(\mu+b\sigma)[/mm] = [mm]\bruch{\mu+b\sigma - \mu}{\sigma}[/mm] = b
>  
> Ergibt:
>  
> [mm]\int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(u\right)^2} du \mathrm[/mm]
>
> Hast du das so gemeint?
>  


Ja. [ok]


> Danke



Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de