www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Zeige: Term ist positiv
Zeige: Term ist positiv < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeige: Term ist positiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:40 Mi 03.08.2016
Autor: pejo

Aufgabe
Zeige, aus a+d [mm] \ge [/mm] b+c und ad>bc folgt 4ad > [mm] (b+c)^{2} [/mm]  
für a,b,c,d >0

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo, also ich habe daran gedacht die Ungleichung über das geometrische und arithmetische Mittel dafür zu gebrauchen aber sonst komme ich nicht weiter.

[mm] (ad)^\bruch{1}{2} \le \bruch{a+d}{2} [/mm]

Dann mit [mm] (ad)^\bruch{1}{2} [/mm] beide Seiten muliplizieren

Bekomme dann ad [mm] \le \bruch{(a+d)^{2}}{4} [/mm]

Somit hätte ich 4ad [mm] \le (a+d)^{2} [/mm]

Kann aus a+d [mm] \ge [/mm] b+c  anwenden, dass [mm] (a+d)^{2} \ge (b+c)^{2} [/mm]

und somit hätte ich  [mm] (a+d)^{2} \ge [/mm] 4ad und  [mm] (a+d)^{2} \ge (b+c)^{2} [/mm]

aber wie zeige ich jetzt die Beziehung zwischen 4ad und [mm] (b+c)^{2} [/mm]  

Danke


        
Bezug
Zeige: Term ist positiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 Mi 03.08.2016
Autor: hippias

Die Aussage mit der strikten Ungleichheit ist falsch: z.B. $a=d=1$, [mm] $b=\frac{3}{2}$ [/mm] und [mm] $c=\frac{1}{2}$. [/mm]

Leider fällt mir gerade nichts zum Beweis der Ungleichung mit [mm] $\geq$ [/mm] ein.

Bezug
        
Bezug
Zeige: Term ist positiv: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Mi 03.08.2016
Autor: fred97

Die Aussage ist falsch !

Mit a=12, b=d=1 und c=6 haben wir

  a+d=13 [mm] \ge [/mm] 7 =b+c, ad=12 >6=bc

aber

   4ad=48 und [mm] (b+c)^2=49. [/mm]

machen wirs allgemeiner: sei a>0, [mm] c=\bruch{a}{2} [/mm]  und b=c=1. Dann gelten

     a+d $ [mm] \ge [/mm] $ b+c und ad>bc.

Betrachten wir die Funktion $f(a):=4ad - [mm] (b+c)^{2} [/mm] $,

also

    [mm] f(a)=4a-(1+\bruch{a}{2} )^2, [/mm]

so hat f die Nullstellen

   [mm] a_1=6+4* \wurzel{2} [/mm]  und  [mm] a_2=6-4* \wurzel{2}. [/mm]

Für a [mm] \in \{a_1,a_2\} [/mm] ist f(a)=0, also 4ad [mm] =(b+c)^{2} [/mm]

Für a [mm] \in (a_1,a_2) [/mm] ist f(a)>0 , also 4ad > [mm] (b+c)^{2} [/mm]

Für [mm] aa_2 [/mm] ist f(a)<0, also 4ad < [mm] (b+c)^{2} [/mm]

FRED

Bezug
                
Bezug
Zeige: Term ist positiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Mi 03.08.2016
Autor: pejo

Danke vielmals!

Könnte man es dann für a+d > b+c zeigen? Mir ist das [mm] \ge [/mm] gleich komisch vorgekommen.

mit a+d > b+c hätte ich zum Schluss meines Ansatzes

[mm] (a+d)^{2} \ge [/mm] 4ad und [mm] (a+d)^{2} [/mm] > [mm] (b+c)^{2} [/mm]

Kann man dann daraus folgern dass 4ad [mm] \ge (b+c)^{2} [/mm] gilt und dann noch die Feinheit herausrechnen dass es dann tatsächlich >  ist?

Bezug
                        
Bezug
Zeige: Term ist positiv: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mi 03.08.2016
Autor: fred97


> Danke vielmals!
>
> Könnte man es dann für a+d > b+c zeigen?

Liest Du, was man Dir schreibt ?? Oben hatte ich:

Mit a=12, b=d=1 und c=6 haben wir

  a+d=13 $ [mm] \ge [/mm] $ 7 =b+c, ad=12 >6=bc

aber

   4ad=48 und $ [mm] (b+c)^2=49. [/mm] $

FRED


>  Mir ist das [mm]\ge[/mm]
> gleich komisch vorgekommen.
>  
> mit a+d > b+c hätte ich zum Schluss meines Ansatzes
>  
> [mm](a+d)^{2} \ge[/mm] 4ad und [mm](a+d)^{2}[/mm] > [mm](b+c)^{2}[/mm]
>  
> Kann man dann daraus folgern dass 4ad [mm]\ge (b+c)^{2}[/mm] gilt
> und dann noch die Feinheit herausrechnen dass es dann
> tatsächlich >  ist?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de