www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Zeige dim L_A >= n-m
Zeige dim L_A >= n-m < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeige dim L_A >= n-m: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Do 02.12.2010
Autor: void.

Aufgabe
Sei B [mm] \in \IK^{mxn} [/mm] . Zeige dim [mm] L_B \ge [/mm] n - m

[mm] L_B [/mm] = { x [mm] \in \IK [/mm] | Bx = 0}


Hallo,

Es wurde gesagt, dass wir das per Induktion über m zeigen sollen.

aber ich hab keine Ahnung wie ich da ein IS ansetzten soll....

Für den IA hab ich:

1. Fall n<m

Beh ist in jedem Fall richtig da es keine dim < 0 gibt und dim [mm] L_B [/mm] somit immer > ist.

2. Fall n=m
Wie im ersten Fall ist dim [mm] L_B [/mm] mind 0 , womit die Beh auch hierfür gilt.

aber wie kann ich jetzt einen IS über m machen???? finde keinen Ansatz :/




danke schonmal im voraus


Gruß


        
Bezug
Zeige dim L_A >= n-m: Hinweis zur Induktion
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Do 02.12.2010
Autor: weightgainer

Hi,
nach meinem Verständnis beinhaltet der Induktionsanfang die Untersuchung der Aussage für m = 1. Deine Fallunterscheidung ist mir in dem Zusammenhang nicht klar.
Wenn die Aussage dann für m = 1 gezeigt ist, kannst du sie für m als korrekt annehmen und die Aussage für m+1 auf die vorherige zurückführen.

Das ist zwar keine Lösung, aber vielleicht reicht dir das ja schon für ein paar gute Ideen.

*Ergänzung*
Ach, und [mm] L_B [/mm] kann eigentlich keine x [mm] \in \IK [/mm] enthalten, sondern eher x [mm] \in \IK^m, [/mm] oder sehe ich das falsch?

Gruß,
weightgainer

Bezug
        
Bezug
Zeige dim L_A >= n-m: Antwort
Status: (Antwort) fertig Status 
Datum: 08:31 Fr 03.12.2010
Autor: fred97

Das folgt doch alles aus dem Dimensionssatz:

       n= dim(kern(B))+ dim(Bild(B))

Somit:

       n= dim(kern(B))+ dim(Bild(B))  [mm] \le [/mm] dim(kern(B))+m

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de