www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Zeilenstufenform
Zeilenstufenform < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeilenstufenform: umformen
Status: (Frage) beantwortet Status 
Datum: 21:04 Do 16.06.2011
Autor: mathetuV

Kann mir bitte jemand schritt für schritt an meinem beispieln erklären, wie ich die lösung finde:

[mm] \pmat{ 0 & 4 & 2 & 1\\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & -2 } [/mm]

vielen dank im vorraus

MfG

        
Bezug
Zeilenstufenform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Do 16.06.2011
Autor: wieschoo

Wo ist die Aufgabe? Reduzierte zeilenstufenform?

Du kannst -2.Zeile auf die erste Zeile addieren und dann addierst z.B. die 4. Zeile auf die erste.
Normierst du noch die 4. Zeile auf 1, dann kannst du auch die restlichen Einträge in der 2 und 3 Zeile eliminieren.


oder du rechnest nach dem stupiden Algorithmus
http://werkzeuge.wieschoo.com/rref.php



Bezug
                
Bezug
Zeilenstufenform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:50 Do 16.06.2011
Autor: mathetuV

ich brauche dass weil ich  die Haupträume beszimmern muss, sorry ich damit mit diesem banalen umformen durcheinnander

wie sind deine end matrix aus?

dankeschön

Bezug
                        
Bezug
Zeilenstufenform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Do 16.06.2011
Autor: wieschoo

Und nun bringen wir die Matrix auf reduzierte Zeilenstufenform:
[mm]\left( \begin {array}{cccc}0 & 4 & 2 & 1 \\0 & 0 & 2 & -1 \\0 & 0 & 0 & -3 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 1 auf 1 normieren, indem wir durch [mm]4[/mm] dividieren.
[mm]\left( \begin {array}{cccc}0 & 1 & \tfrac{1}{2} & \tfrac{1}{4} \\0 & 0 & 2 & -1 \\0 & 0 & 0 & -3 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 2 auf 1 normieren, indem wir durch [mm]2[/mm] dividieren.
[mm]\left( \begin {array}{cccc}0 & 1 & \tfrac{1}{2} & \tfrac{1}{4} \\0 & 0 & 1 & \tfrac{-1}{2} \\0 & 0 & 0 & -3 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 1 verändern, indem wir ein Vielfaches der Zeile 2 hinzuaddieren.
[mm]\left( \begin {array}{cccc}0 & 1 & 0 & \tfrac{1}{2} \\0 & 0 & 1 & \tfrac{-1}{2} \\0 & 0 & 0 & -3 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 3 auf 1 normieren, indem wir durch [mm]-3[/mm] dividieren.
[mm]\left( \begin {array}{cccc}0 & 1 & 0 & \tfrac{1}{2} \\0 & 0 & 1 & \tfrac{-1}{2} \\0 & 0 & 0 & 1 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 1 verändern, indem wir ein Vielfaches der Zeile 3 hinzuaddieren.
[mm]\left( \begin {array}{cccc}0 & 1 & 0 & 0 \\0 & 0 & 1 & \tfrac{-1}{2} \\0 & 0 & 0 & 1 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 2 verändern, indem wir ein Vielfaches der Zeile 3 hinzuaddieren.
[mm]\left( \begin {array}{cccc}0 & 1 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 4 verändern, indem wir ein Vielfaches der Zeile 3 hinzuaddieren.
[mm]\left( \begin {array}{cccc}0 & 1 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1 \\0 & 0 & 0 & 0 \\\end {array} \right) [/mm]
[mm]\left( \begin {array}{cccc}0 & 1 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1 \\0 & 0 & 0 & 0 \\\end {array} \right) [/mm]

Die reduzierte Zeilenstufenform der Matrix:
[mm]A=\left( \begin {array}{cccc}0 & 4 & 2 & 1 \\0 & 0 & 2 & -1 \\0 & 0 & 0 & -3 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

lautet:
[mm]\tilde{A}=\left( \begin {array}{cccc}0 & 1 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1 \\0 & 0 & 0 & 0 \\\end {array} \right) [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de