www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - Zeitbereich / Korrespondenzen
Zeitbereich / Korrespondenzen < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeitbereich / Korrespondenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Do 19.01.2012
Autor: fse

Aufgabe
Hallo,
Könnte mir jemand jeweils eine Funktion im Zeitbereich nennen die durch Laplacetransformation (und anschliesender partialbruchzerlegung ,koeffizientenvergleich) mit den Korrespondenzen der Form:

[mm] g(s)=\bruch{1}{(s^2+s*2\alpha)*+\beta^2} [/mm]
und
[mm] g(s)=\bruch{s}{s^2+s*2\alpha)*+\beta^2} [/mm]
gelöst werden kann.

Wäre echt klasse, da ich mir nicht vorstellen kann wie so eine Funktion aussieht!
Gruß fse

        
Bezug
Zeitbereich / Korrespondenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Do 19.01.2012
Autor: MathePower

Hallo fse,

> Hallo,
>  Könnte mir jemand jeweils eine Funktion im Zeitbereich
> nennen die durch Laplacetransformation (und anschliesender
> partialbruchzerlegung ,koeffizientenvergleich) mit den
> Korrespondenzen der Form:
>  
> [mm]g(s)=\bruch{1}{(s^2+s*2\alpha)*+\beta^2}[/mm]
>  und
>  [mm]g(s)=\bruch{s}{s^2+s*2\alpha)*+\beta^2}[/mm]
>  gelöst werden kann.
>  Wäre echt klasse, da ich mir nicht vorstellen kann wie so
> eine Funktion aussieht!


Hier musst Du zunächst die geeigneten  Funktionen umformen,
und dann die Verschiebung im Bildbereich anwenden, wobei
hier eine Fallunterscheidung zu machen ist.


>  Gruß fse


Gruss
MathePower

Bezug
                
Bezug
Zeitbereich / Korrespondenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:01 Sa 21.01.2012
Autor: fse

Aufgabe
> Hallo nochmals,
>  Könnte mir jemand jeweils eine Funktion im Zeitbereich
> nennen die durch Laplacetransformation (und anschliesender
> partialbruchzerlegung ,koeffizientenvergleich) mit den
> Korrespondenzen der Form:

[mm] g(s)=\bruch{1}{s^2+s\cdot{}2\alpha{}+\beta^2} [/mm]
[mm] g(s)=\bruch{s}{s^2+s\cdot{}2\alpha{}+\beta^2} [/mm]



Der grund dafür ist das mir in meiner Klausur eventuell eine Funktion gegen ist die ich Laplace transformieren muss und dann die Korospendenzen der Form
[mm] g(s)=\bruch{1}{s^2+s\cdot{}2\alpha{}+\beta^2} [/mm]
oder
[mm] g(s)=\bruch{s}{s^2+s\cdot{}2\alpha{}+\beta^2 } [/mm]

verwenden muß zur Rücktransformation!
da ich nun gern wissen würd wie so eine Ausgangsfunktion aussehen könnte wäre es klassse wenn jemand ein Bsp. für so eine Funktion nennen würde.

Gruß fse

Bezug
                        
Bezug
Zeitbereich / Korrespondenzen: Sinus oder sinh
Status: (Antwort) fertig Status 
Datum: 09:36 Sa 21.01.2012
Autor: Infinit

Hallo fse,
wie bereits erwähnt, musst Du hierbei eine Fallunterscheidung durchführen. Wenn es Dir nur um die Korrespondenzen geht, die stehen in jeder besseren Laplacetabelle drin.
Zu
[mm] \bruch{1}{s^2+2\delta s + \omega_0^2} [/mm] gehört für
[mm] \omega_0^2 - \delta^2 > 0 [/mm]
die folgende Zeitfunktion:
[mm] \bruch{1}{\omega_e} e^{- \delta t} \sin (\omega_e t}) [/mm] mit
[mm] \omega_e = \wurzel{\omega_0^2 - \delta^2} [/mm]


Für
[mm] \omega_0^2 - \delta^2 < 0 [/mm] bekommt man die folgende Zeitfunktion:

[mm] \bruch{1}{\omega_e} e^{- \delta t} \sinh (\omega_e t}) [/mm] mit
[mm]\omega_e = \wurzel{\delta^2 - \omega_0^2} [/mm]

Die Multiplikation einer Funktion im Laplacebereich mit s entspricht der Ableitung der dazugehörigen Funktion im Zeitbereich. Deine zweite Korrespondenz ist demzufolge die Ableitung der oben angegebenen Zeitfunktionen.
Viele Grüße,
Infinit


Bezug
        
Bezug
Zeitbereich / Korrespondenzen: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:52 Do 19.01.2012
Autor: fse

KORREKTUR
[mm] g(s)=\bruch{1}{s^2+s\cdot{}2\alpha{}+\beta^2} [/mm]
[mm] g(s)=\bruch{s}{s^2+s\cdot{}2\alpha{}+\beta^2} [/mm]
SORRY
fse

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de