www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Zeitdauer+Strecke von Stein
Zeitdauer+Strecke von Stein < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeitdauer+Strecke von Stein: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:01 Sa 28.01.2006
Autor: saoody

Aufgabe
Ein Stein ($m=1 kg$) fällt senkrecht nach unten. Eine Sekunde später wird ein zweiter Stein ($m=2 kg$) mit einer Anfangsgeschwindigkeit [mm] $v_0=13 [/mm] m/s$ dem ersten hinterher geworfen.

Gesucht:
1) Zeitdauer bis der 2te Stein den ersten erreicht;
2) Zurückgelegte Strecke.

Hallo,

also bei dieser Aufgabe geht es mir darum einen 2ten einfacheren Lösungsweg zufinden. Denn mein Lösungsweg ist etwas zu lang (in Form einer Tabelle) !

Also hier erst einmal
meine Lösung:

1.Stein: s1= 0.5*g*t1²
2.Stein: s2= 0.5*g*t2²+v0*t2    (t2 = t1 - 1s)

eigentliche Zeit:       1s         2s         3s            
1 Stein:                4,9m     19,62m     44,15m    
2 Stein:                0m       17,9m      45,62m    

eigentliche Zeit:       2,5s      2,54s
1 Stein:               30,66m     31,645m
2 Stein:               30,54m     31,652m


Am Anfang hat der 2te Stein 0m, weil dieser 1s später geworfen wird.
Deswegen müssen wir bei der eigentlichen Zeit von 2s für 2ten Stein t=1s einsetzen

=> nach ca. 2,54 s erreicht der 2te Stein den ersten !

2) s=0.5*9,81 m/s²*2,54s = 31,65m

Mein Problem ist das man hier zuviel mit der Zeit rumspielen muss bis man den Weg heraus bekommt.
Kennt jemand einen anderen bzw. einfacheren  Weg um an die Lösung zu kommen ?

Danke :-)

        
Bezug
Zeitdauer+Strecke von Stein: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Sa 28.01.2006
Autor: kunzm

Hallo saoody,

wenn ich mein Koordinatensystem so lege, dass ich den ersten Stein im Nullpunkt fallen lasse, und den zweiten Stein eine Sekunde später an genau der gleichen Stelle (also auch im Nullpunkt) mit der Geschwindigkeit von 13 m/s "werfe", dann gilt für die Bewegungsgleichungen in diesem Koordinatensystem in dem Moment in dem ich Stein 2 loswerfe:

[mm] $x_1(t)=\frac{g}{2}t^2+v_{0,1}(1s)\cdot t+x_{0,1}(1s)$ [/mm]

und

[mm] $x_2(t)=\frac{g}{2}t^2+v_{0,2}\cdot [/mm] t+0$, [mm] $v_{0,2}=13\frac{m}{s}$ [/mm]

Die beiden Steine treffen sich dann, wenn [mm] $x_1(t)$ [/mm] und [mm] $x_2(t)$ [/mm] die Gleichen Werte annehmen. Wenn Du die Geschwindigkeit [mm] $v_{0,1}(1s)$ [/mm] und dei Strecke [mm] $x_{0,1}(1s)$ [/mm] berechnest, einsetzt und dann die beiden Ausdrücke gleichsetzt bekommst für [mm] $t\approx [/mm] 1,54$s, das heisst der Stein  zwei braucht nach dem Abwurf 1,54 Sekunden um Stein 1 einzuholen. Stein 1 war dann allerdings schon 2,54 Sekunden unterwegs. Das ist dann betrachtungssache.

Die Strecke auszurechen bleibt an Dir.

Liebe Grüße, Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de