www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Zentraler Grenzwertsatz
Zentraler Grenzwertsatz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zentraler Grenzwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Fr 12.09.2014
Autor: Trikolon

Aufgabe
Es ist bekannt dass zwischen 1% und 10% der Deutschen Vegetarier sind. Ein Marktforschungsinstitut ist daran interessiert herauszufinden, wie hoch der Anteil der sich vegetarisch ernährenden Personen tatsächlich ist und führt zu diesem Zweck eine repräsentative Umfrage durch. Bestimme m.H. des Zentralen Grenzwertsatzes approximativ eine möglichst kleine Anzahl n von Personen, die befragt werden müssen, damit die Abweichung des Mittelwertes vom tatsächlichen Anteil an Vegetariern mit einer Wkt von mindestens 99& um nicht mehr als 1% abweicht

Hallo,

eigentlich ich obige Aufgabe kein Problem, es sind 6084 Personen. Dass Problem ist aber, dass wir Korrekturterme verwenden sollen. Dann tritt aber eine Gleichung auf, die sich ohne TR nicht lösen lässt. Und ein TR ist nicht zulässig...

Dann hätte man [mm] \bruch{0,01n+0,5}{0,3 \wurzel{n} } \ge [/mm] 2,6

        
Bezug
Zentraler Grenzwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Fr 12.09.2014
Autor: schachuzipus

Hallo,

> Es ist bekannt dass zwischen 1% und 10% der Deutschen
> Vegetarier sind. Ein Marktforschungsinstitut ist daran
> interessiert herauszufinden, wie hoch der Anteil der sich
> vegetarisch ernährenden Personen tatsächlich ist und
> führt zu diesem Zweck eine repräsentative Umfrage durch.
> Bestimme m.H. des Zentralen Grenzwertsatzes approximativ
> eine möglichst kleine Anzahl n von Personen, die befragt
> werden müssen, damit die Abweichung des Mittelwertes vom
> tatsächlichen Anteil an Vegetariern mit einer Wkt von
> mindestens 99& um nicht mehr als 1% abweicht
> Hallo,

>

> eigentlich ich obige Aufgabe kein Problem, es sind 6084
> Personen. Dass Problem ist aber, dass wir Korrekturterme
> verwenden sollen. Dann tritt aber eine Gleichung auf, die
> sich ohne TR nicht lösen lässt. Und ein TR ist nicht
> zulässig...

>

> Dann hätte man [mm]\bruch{0,01n+0,5}{0,3 \wurzel{n} } \ge[/mm] 2,6

Dies möchtest du nach n lösen?

Multipliziere mit [mm] $0,3\sqrt [/mm] n$ durch, dann alles nach links, so dass [mm] $....\ge [/mm] 0$ dasteht.

Dann zB. [mm] $z^2=n$ [/mm] und du hast eine quadr. (Un-)Gleichung ...

Gruß

schachuzipus

Bezug
                
Bezug
Zentraler Grenzwertsatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:15 Fr 12.09.2014
Autor: Trikolon

Das ist schon klar.
Aber 1. Sind das Ergebnis und der rechenweg überhaupt korrekt? Und 2. wundere ich mich nur dass man das ohne TR lösen soll.

Bezug
                        
Bezug
Zentraler Grenzwertsatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 14.09.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Zentraler Grenzwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 So 14.09.2014
Autor: Trikolon

Ich muss die Frage nochmal pushen, weil ich über eine Antwort sehr froh wäre.

Bezug
                                
Bezug
Zentraler Grenzwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 So 14.09.2014
Autor: abakus


> Ich muss die Frage nochmal pushen, weil ich über eine
> Antwort sehr froh wäre.

Soso, du willst die Frage pushen.
Du hast seit zwei Tagen die Antwort, wie die von dir genannte quadratische (Un-)Gleichung ohne Taschenrechner gelöst werden kann.
Du hast weiterhin mit 6084 ein Ergebnis genannt (ich weiß jetzt nicht, ob das schon mit oder ohne Stetigkeitskorrektor bestimmt wurde). 
Was ich mindestens von dir erwarte: Du hast in den letzen zwei Tagen die Ungleichung mit elementaren Mitteln gelöst und einen Wert n erhalten, der entweder nahe bei 6084 liegt oder der weit davon entfernt liegt.
Wenn du dieses Ergebnis vorgelegt hast, können wir weiter reden.
Gruß Abakus

Bezug
                
Bezug
Zentraler Grenzwertsatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:40 Di 16.09.2014
Autor: Trikolon

Zur Ungleichung: Meine erste Frage war ja, ob diese Ungleich überhaupt richtig ist (d.h. habe ich den Zentralen Grenzwertsatz mit Stetigkeitskorrektur überhaupt korrekt angewandt?)

Zur Rechnung:
Ich habe (nach Substitution): [mm] 0,01z^2-0,78z+0,5 \ge [/mm] 0.
Nach Rücksubstitution erhalte ich n [mm] \ge [/mm] 5983,58219.

Ich habe aber, wie gesagt, die Vermutung dass an meinem Rechenweg der zu dieser Ungleichung führt, ein Fehler steckt. Denn man musste n ohne TR bestimmen. (und [mm] \wurzel{1471} [/mm] im Kopf ist da eher unwahrscheinlich).

Meine angegebene Lösung von 6048 ist ohne die Stetigkeitskorrektur

Bezug
                        
Bezug
Zentraler Grenzwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:33 Di 16.09.2014
Autor: schachuzipus

Hallo,

> Zur Ungleichung: Meine erste Frage war ja, ob diese
> Ungleich überhaupt richtig ist

Aha, von einer Frage ist aber im Ausgangspost nix zu erkennen. Weder von einer ersten noch von potentiell weiteren ...

Du solltest deine Fragen nicht nur telepatisch, sondern und vor allem hier schriftlich formulieren.

Dann ist die Trefferwahrscheinlichkeit einer richtigen Antwort höher.

Anderenfalls solltest du dich direkt an unsere liebe Angela wenden. Die hat neben einigen Glaskugeln und Teetassen sogar einen handzahmen schwarzen Raben ...


Gruß

schachuzipus

Bezug
                                
Bezug
Zentraler Grenzwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:42 Mi 17.09.2014
Autor: Trikolon

Ich gelobe Besserung! ;-)

Wie sieht es denn nun aus mit meinen Fragen?

Bezug
                        
Bezug
Zentraler Grenzwertsatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 18.09.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de