www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Zerfällungskörper
Zerfällungskörper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerfällungskörper: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:19 Mo 18.09.2006
Autor: bubble

Aufgabe
Gegeben: f = [mm] X^{6} [/mm] - 1
Gesucht:
Ist f irreduzibel?
Wie lautet der Zerfällungskörper?
Wie gross ist der Körpergrad?
Wie

Hallo zusammen

Ist f irreduzibel?
Ja, denn [mm] X^{6} [/mm] - 1 : (X-1) = [mm] X^{5}+X^{4}+X^{3}+X^{2}+x+1 [/mm]

Zerfällungskörper: [mm] Q(\wurzel[6]{1}) [/mm]

[mm] Q(\wurzel[6]{1}) [/mm] = {a [mm] +\wurzel[6]{1}b; [/mm] a,b [mm] \in [/mm] Q(X)}
Körpererweiterungsgrad = 2

Stimmen diese Antworten?

        
Bezug
Zerfällungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 06:12 Di 19.09.2006
Autor: felixf

Hallo bubble!

> Gegeben: f = [mm]X^{6}[/mm] - 1
>  Gesucht:
> Ist f irreduzibel?
>  Wie lautet der Zerfällungskörper?
> Wie gross ist der Körpergrad?
>  Wie
>
> Hallo zusammen
>  
> Ist f irreduzibel?
> Ja, denn [mm]X^{6}[/mm] - 1 : (X-1) = [mm]X^{5}+X^{4}+X^{3}+X^{2}+x+1[/mm]

Also wenn du [mm] $x^6 [/mm] - 1$ durch ein Polynom vom Grad 1 teilen kannst, ohne dass ein Rest uebrig bleibt, dann ist [mm] $x^6 [/mm] - 1$ reduzibel und somit nicht irreduzibel!

> Zerfällungskörper: [mm]Q(\wurzel[6]{1})[/mm]

6te Wurzeln von 1 gibt es einige. Aber nicht jede tuts hier! (Z.B. ist 1 auch eine solche Wurzel, aber [mm] $\IQ[1] [/mm] = [mm] \IQ$ [/mm] ist sicher nicht der Zerfaellungskoerper!)

Gib doch mal eine primitive 6te Einheitswurzel in [mm] $\IC$ [/mm] an.

> [mm]Q(\wurzel[6]{1})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= {a [mm]+\wurzel[6]{1}b;[/mm] a,b [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Q(X)}

Das gilt sicher nicht. Wie willst du etwa $\sqrt[6]{1}^2$ so darstellen?

>  Körpererweiterungsgrad = 2

Falsch.

> Stimmen diese Antworten?

Leider nein...

LG Felix


Bezug
                
Bezug
Zerfällungskörper: Vorsicht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:53 Di 19.09.2006
Autor: statler

Guten Morgen Felix, guten Morgen bubble!

> >  Körpererweiterungsgrad = 2

>  
> Falsch.

Es ist doch [mm] X^{6} [/mm] - 1 = [mm] (X+1)*(X-1)*(X^{2} [/mm] + X + [mm] 1)*(X^{2} [/mm] - X + 1),
und der letzte Faktor gibt mir die beiden primitiven 6. Einheitswurzeln.

Gruß aus Hamburg-Harburg
Dieter


Bezug
                        
Bezug
Zerfällungskörper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:51 Di 19.09.2006
Autor: felixf

Guten Morgen Dieter,

> > >  Körpererweiterungsgrad = 2

>  >  
> > Falsch.
>  
> Es ist doch [mm]X^{6}[/mm] - 1 = [mm](X+1)*(X-1)*(X^{2}[/mm] + X + [mm]1)*(X^{2}[/mm]
> - X + 1),
>  und der letzte Faktor gibt mir die beiden primitiven 6.
> Einheitswurzeln.

Stimmt, da hast du recht! Hab irgendwie nicht mehr dran gedacht dass die 2. Einheitswurzeln ja schon in [mm] $\IZ$ [/mm] liegen :-) War halt zu spaet in der Nacht...

LG Felix


Bezug
                                
Bezug
Zerfällungskörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Di 19.09.2006
Autor: bubble

Dann ist der Zerfällungskörper [mm] Q(e^{\bruch{2i\pi}{6}})? [/mm]
D.h. [mm] Q(e^{\bruch{2i\pi}{6}})= [/mm] {a + [mm] e^{\bruch{2i\pi}{6}} [/mm] b +  [mm] e^{\bruch{4i\pi}{6}} [/mm] c + [mm] e^{\bruch{4i\pi}{6}} [/mm] d +  [mm] e^{\bruch{8i\pi}{6}} [/mm] e + [mm] e^{\bruch{10i\pi}{6}} [/mm] f ; a, b, c, d, e, f [mm] \in [/mm] Q(X)}

Ist dann der Körpererweiterungsgrad 6?

Bezug
                                        
Bezug
Zerfällungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 07:14 Mi 20.09.2006
Autor: statler

Hallo bubble!

> Dann ist der Zerfällungskörper [mm]Q(e^{\bruch{2i\pi}{6}})?[/mm]

Ja, oder z. B. auch [mm] \IQ(\wurzel{-3}) [/mm]

> D.h. [mm]Q(e^{\bruch{2i\pi}{6}})=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{a + [mm]e^{\bruch{2i\pi}{6}}[/mm] b +

>  [mm]e^{\bruch{4i\pi}{6}}[/mm] c + [mm]e^{\bruch{4i\pi}{6}}[/mm] d +  
> [mm]e^{\bruch{8i\pi}{6}}[/mm] e + [mm]e^{\bruch{10i\pi}{6}}[/mm] f ; a, b, c,
> d, e, f [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Q(X)}

Diese Dinger sind nicht lin. unabhängig!

> Ist dann der Körpererweiterungsgrad 6?

Deswegen ist der Erweiterungsgrad auch nicht 6, sondern 2.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de