www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Zerfällungskörper, Galoisgr.
Zerfällungskörper, Galoisgr. < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerfällungskörper, Galoisgr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:56 Fr 15.04.2011
Autor: Lippel

Aufgabe
Betrachte die Polynome [mm] $f(X)=X^4+1, g(X)=X^4-10X^2+5$ [/mm] und [mm] $h(X)=X^4-3X^2+3 \in \IQ[X]$. [/mm]

Zu zeigen ist:
(a) $f, [mm] g\:$ [/mm] und [mm] $h\:$ [/mm] sind irreduzible über [mm] $\IQ$. [/mm]
(b) Die zugehörigen Galoisgruppen sind paarweise nicht isomorph.


Hallo,

ich habe beim zweiten Teil so meine Probleme. Aber zunächst (a):
g und h sind nach Eisenstein irreduzibel mit $p=5$ und $p=3$. Es ist außerdem [mm] $f(X+1)=X^4+4X^3+6X^2+4X+2$ [/mm] irreduzibel nach Eisenstein mit $p=2$. Also ist auch f irreduzibel über [mm] $\IQ$ [/mm]

(b) f hat sie Nullstellen [mm] $\zeta=e^{i\frac{\pi}{8}}, \zeta^3, \zeta^5, \zeta^7$. [/mm] Diese liegen alle bereits in [mm] $L:=\IQ(\zeta)$. [/mm] Damit ist $L$ ein Zerfällunskörper von $f$ über [mm] $\IQ$ [/mm] und es gilt [mm] $[L:\IQ]=4$. [/mm]

$g$ können wir in [mm] $\IC[X]$ [/mm] wie folgt zerlegen: [mm] $g(X)=(X^2-(5+2\sqrt{5}))(X^2-(5-2\sqrt{5}))=(X-\sqrt{5+2\sqrt{5}})(X+\sqrt{5+2\sqrt{5}})(X-\sqrt{5-2\sqrt{5}})(X+\sqrt{5-2\sqrt{5}})=(X-a)(X+a)(X-b)(X+b)$ [/mm] mit [mm] $a=\sqrt{5+2\sqrt{5}}, b=\sqrt{5-2\sqrt{5}}$ [/mm]
Ich sehe nicht, dass $b$ bereits in [mm] $\IQ(a)$ [/mm] liegt. Aber wie kann ich das prüfen? Es ergäbe sich hier als Zerfällungskörper [mm] $L'=\IQ(a,b)$ [/mm] und mit [mm] $[\IQ(a):\IQ]=4$ [/mm] und [mm] $[L':\IQ(a)]=2$ [/mm] (wegen [mm] $b^2=10-a^2$): $[L':\IQ]=8$. [/mm] Aber ich bin mir wie gesagt nicht sicher, ob nicht b bereits in [mm] $\IQ(a)$ [/mm] liegt.

Für $h$ ergibt sich eine ähnliche Form: [mm] $h(X)=X^4-3X^2+3 [/mm] = [mm] (X^2-\frac{3+\sqrt{-3}}{2})(X^2-\frac{3-\sqrt{-3}}{2}) [/mm] = (X+a)(X-a)(X+b)(X-b)$ mit $a = [mm] \sqrt{\frac{3+\sqrt{-3}}{2}}, [/mm] b = [mm] \sqrt{\frac{3-\sqrt{-3}}{2}}$. [/mm]
Wieder weiß ich nicht, wie ich testen kann, ob $b$ in [mm] $\IQ(a)$ [/mm] liegt? Auf den ersten Blick ist dies nicht der Fall.
Ist jedoch $b [mm] \not\in \IQ(a)$, [/mm] dann hätten doch g und h die gleiche Galoisgruppe [mm] ($D_4$?). [/mm]

Ich habe noch versucht, die Diskriminante der beiden Polynome zu bestimmen, um zu testen, ob die Galoisgruppen in der [mm] $A_4$ [/mm] liegen. Es ergeben sich keine Quadratzahlen in [mm] $\IQ$ [/mm] (modulo Rechenfehler), damit liegen beide Galoisgruppen nicht in der [mm] $A_4$. [/mm] Hilft mir das weiter?

LG Lippel



        
Bezug
Zerfällungskörper, Galoisgr.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:14 So 17.04.2011
Autor: wieschoo

Hi,

ich kann dir nur das Ergebnis geben:
f Kleinsche Vierergruppe
g zyklische gruppe 4 C4
h Dieedergruppe D4

laut Maple. Ich suche auch noch das erzeugende Element für die g. Bist nicht allein ;-)

Bezug
                
Bezug
Zerfällungskörper, Galoisgr.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:06 Mo 18.04.2011
Autor: statler

Hi,
das erzeugende Element für die g ist a [mm] \mapsto [/mm] -b. Weiß Ahorn das nicht? Traurig.
Gruß aus HH-Harburg
Dieter

Bezug
                        
Bezug
Zerfällungskörper, Galoisgr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Mo 18.04.2011
Autor: Lippel

Hallo,

vielen Dank euch beiden. Ich weiß jetzt auch, warum der Zerfällungskörper von g nur Grad 4 über [mm] $\IQ$ [/mm] hat. Es ist mit $ [mm] a=\sqrt{5+2\sqrt{5}}, b=\sqrt{5-2\sqrt{5}}$ [/mm] b Nullstelle des Polynoms [mm] $aX-\frac{1}{2}a^2+\frac{5}{2} \in \IQ(a)[X]$ [/mm] ist. Also $b [mm] \in \IQ(a)$. [/mm]

Trotzdem würde mich noch interessieren, ob es da eine systematische Vorgehensweise gibt um festzustellen, ob bei Adjunktion einer Nullstelle eines Polynoms noch weitere Nullstellen dieses Polynoms im so erhaltenen Körper liegen. Kennt da jemand ein Konzept?

LG Lippel

Bezug
                                
Bezug
Zerfällungskörper, Galoisgr.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:39 Di 19.04.2011
Autor: statler

Mahlzeit!

> vielen Dank euch beiden. Ich weiß jetzt auch, warum der
> Zerfällungskörper von g nur Grad 4 über [mm]\IQ[/mm] hat. Es ist
> mit [mm]a=\sqrt{5+2\sqrt{5}}, b=\sqrt{5-2\sqrt{5}}[/mm] b Nullstelle
> des Polynoms [mm]aX-\frac{1}{2}a^2+\frac{5}{2} \in \IQ(a)[X][/mm]
> ist. Also [mm]b \in \IQ(a)[/mm].
>  
> Trotzdem würde mich noch interessieren, ob es da eine
> systematische Vorgehensweise gibt um festzustellen, ob bei
> Adjunktion einer Nullstelle eines Polynoms noch weitere
> Nullstellen dieses Polynoms im so erhaltenen Körper
> liegen. Kennt da jemand ein Konzept?

In diesem Falle war mir aufgegangen, daß [mm] \sqrt{5} [/mm] in [mm] \IQ(a) [/mm] und in [mm] \IQ(b) [/mm] liegt und ab = [mm] \sqrt{5} [/mm] ist. Darauf wäre ich allerdings wohl nicht gekommen, wenn nicht in der Aufgabe gestanden hätte, daß die 3 Gruppen verschieden sein sollen. Da als 8er-Gruppe nur D4 in Frage kommt, bleibt hier nur Z4.

Man kann das auch systematisch abarbeiten, sonst gäbe es ja keine Computer-Programme zur Lösung. Aber den Weg muß ich mir erst wieder zurechtlegen, ich laß das mal offen für jemand Schnelleren.

Gruß aus HH-harburg
Dieter

Bezug
                                        
Bezug
Zerfällungskörper, Galoisgr.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 21.04.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de