www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Zerfällungskörper / einf. Erw.
Zerfällungskörper / einf. Erw. < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerfällungskörper / einf. Erw.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Mi 08.09.2010
Autor: cantor


Hallo zusammen,

wieder einmal würde ich mich über Hinweise zu folgendem Problem freuen:

Es geht um den Beweis der Eindeutigkeit des Zerfällungskörpers eines Polynoms. Der Beweis ist mir klar, mit Ausnahme eines Schrittes den ich hier skizzieren möchte:

Es ist [mm]m \in k[x][/mm], [mm]p[/mm] ist ein irreduzibler Teiler von [mm]m[/mm] und [mm]a[/mm] eine Nullstelle von [mm]p[/mm]. [mm]k(a)[/mm] ist die zugehörige einfache Körpererweiterung. [mm]K[/mm] ist ein Zerfällungskörper von [mm]m[/mm]. Nun heißt es im Beweis:

[mm]m = (x-a)*g[/mm] in [mm]k(a)[x][/mm]

Das ist klar, [mm]a[/mm] ist Nullstelle in [mm]k(a)[x][/mm], diese kann man in [mm]k(a)[x][/mm] "ausklammern".

Weiter heißt es:

[mm]K[/mm] ist ein Zerfällungskörper von [mm]g[/mm] über [mm]k(a)[/mm].

Das ist mir nicht klar. Die Nullstelle [mm]a[/mm] muss ja nicht in [mm]K[/mm] liegen. Wie kann man also allgemein zeigen, dass für eine beliebige Nullstelle diese Aussage gilt?

Besten Dank im Voraus für Eure Hinweise

cantor


        
Bezug
Zerfällungskörper / einf. Erw.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Mi 08.09.2010
Autor: felixf

Moin cantor!

> wieder einmal würde ich mich über Hinweise zu folgendem
> Problem freuen:
>  
> Es geht um den Beweis der Eindeutigkeit des
> Zerfällungskörpers eines Polynoms. Der Beweis ist mir
> klar, mit Ausnahme eines Schrittes den ich hier skizzieren
> möchte:
>  
> Es ist [mm]m \in k[x][/mm], [mm]p[/mm] ist ein irreduzibler Teiler von [mm]m[/mm] und
> [mm]a[/mm] eine Nullstelle von [mm]p[/mm]. [mm]k(a)[/mm] ist die zugehörige einfache
> Körpererweiterung. [mm]K[/mm] ist ein Zerfällungskörper von [mm]m[/mm].
> Nun heißt es im Beweis:
>  
> [mm]m = (x-a)*g[/mm] in [mm]k(a)[x][/mm]
>
> Das ist klar, [mm]a[/mm] ist Nullstelle in [mm]k(a)[x][/mm], diese kann man
> in [mm]k(a)[x][/mm] "ausklammern".


Genau.

> Weiter heißt es:
>  
> [mm]K[/mm] ist ein Zerfällungskörper von [mm]g[/mm] über [mm]k(a)[/mm].
>  
> Das ist mir nicht klar. Die Nullstelle [mm]a[/mm] muss ja nicht in [mm]K[/mm]
> liegen. Wie kann man also allgemein zeigen, dass für eine
> beliebige Nullstelle diese Aussage gilt?

Doch: $K$ ist Zerfaellungskoerper von $m$ ueber $k$ und enthaelt somit alle Nullstellen von $m$, insbesondere auch $a$.

LG Felix



Bezug
                
Bezug
Zerfällungskörper / einf. Erw.: alles klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:39 Do 09.09.2010
Autor: cantor

Hallo Felix,

danke nochmal für die schnelle Antwort.

Ein Zerfällungskörper muss natürlich ALLE Nulstellen enthalten, das macht Sinn.

Wenn's nur immer so einfach wäre.

Viele Grüße,
cantor


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de