www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Zerlegung eines Vektors
Zerlegung eines Vektors < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegung eines Vektors: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 So 15.04.2012
Autor: marvman91

Aufgabe
Sei [mm] \vec{e_{1}}, \vec{e_{2}}, \vec{e_{3}} [/mm] eine Orthonormalbasis eines dreidimensionalen Euklidischen Vektorraumes [mm] E_{3}. [/mm]
Sei T der von den Vektoren [mm] \vec{a} [/mm] = [mm] -\vec{e_{1}} [/mm] + [mm] \vec{e_{3}} [/mm] und [mm] \vec{b} [/mm] = [mm] \vec{e_{2}} [/mm] aufgespannte Teilraum.
Zerlegen Sie den Vektor [mm] \vec{x} [/mm] = [mm] -\vec{e_{1}} [/mm] + [mm] 2\vec{e_{2}} [/mm] + [mm] 5\vec{e_{3}} [/mm] gemäß [mm] \vec{x} [/mm] = [mm] \vec{u} [/mm] + [mm] \vec{v} [/mm] mit [mm] \vec{u} \in [/mm] T und [mm] \vec{v} \in T^{\perp} [/mm] (Komplement).

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi Leute,

dies ist mein erster Post und ich hoffe ich mache alles richtig.
Also: Ich komme bei dieser Aufgabe nicht wirklich weiter und hoffe Ihr könnt mir etwas weiterhelfen.

Gruß marv

        
Bezug
Zerlegung eines Vektors: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 So 15.04.2012
Autor: steppenhahn


> Sei [mm]\vec{e_{1}}, \vec{e_{2}}, \vec{e_{3}}[/mm] eine
> Orthonormalbasis eines dreidimensionalen Euklidischen
> Vektorraumes [mm]E_{3}.[/mm]
>  Sei T der von den Vektoren [mm]\vec{a}[/mm] = [mm]-\vec{e_{1}}[/mm] +
> [mm]\vec{e_{3}}[/mm] und [mm]\vec{b}[/mm] = [mm]\vec{e_{2}}[/mm] aufgespannte
> Teilraum.
>  Zerlegen Sie den Vektor [mm]\vec{x}[/mm] = [mm]-\vec{e_{1}}[/mm] +
> [mm]2\vec{e_{2}}[/mm] + [mm]5\vec{e_{3}}[/mm] gemäß [mm]\vec{x}[/mm] = [mm]\vec{u}[/mm] +
> [mm]\vec{v}[/mm] mit [mm]\vec{u} \in[/mm] T und [mm]\vec{v} \in T^{\perp}[/mm]
> (Komplement).



> Hi Leute,
>  
> dies ist mein erster Post und ich hoffe ich mache alles
> richtig.


Hallo, dann erstmal [willkommenmr] !


>  Also: Ich komme bei dieser Aufgabe nicht wirklich weiter
> und hoffe Ihr könnt mir etwas weiterhelfen.


Der Raum $T$ besitzt laut Aufgabenstellung die Basis $(a,b)$ (mach dir klar, dass das eine Basis ist).

Der Raum [mm] $T^{\perp}$ [/mm] ist das orthogonale Komplement. Da $T$ zweidimensional ist, ist [mm] $T^{\perp}$ [/mm] eindimensional und du kannst einen aufspannenden Vektor zum Beispiel durch das Kreuzprodukt

$c =  a [mm] \times [/mm] b$

berechnen. Mach das mal!


Es gibt nun zwei Möglichkeiten:

1) [elementare, nicht elegant] Du machst ein lineares Gleichungssystem, indem du

$x = [mm] \lambda_1*a [/mm] + [mm] \lambda_2*b [/mm] + [mm] \lambda_3*c$ [/mm]

nach [mm] $\lambda_1, \lambda_2, \lambda_3$ [/mm] auflöst. Dann muss

$u = [mm] \lambda_1*a [/mm] + [mm] \lambda_2*b \in [/mm] T$ und $v = [mm] \lambda_3*c \in T^{\perp}$ [/mm]

gewählt werden. Ist das klar?


2) Du führst eine orthogonale Projektion des Vektors $x$ auf den Raum $T$ durch. Dazu musst du die Basis $(a,b)$ von $T$ in eine Orthonormalbasis $(a', b')$ umwandeln. (Gram-Schmidtsches Orthogonalisierungsverfahren).

Dann kannst du mittels der Formel

$P(x) = [mm] \langle [/mm] x,a' [mm] \rangle [/mm] * a' + [mm] \langle [/mm] x,b' [mm] \rangle [/mm] * b' [mm] \in [/mm] T$

eine Projektion von $x$ auf $T$ berechnen. Es ist dann $u = P(x)$ zu wählen und $v = x-u [mm] \in T^{\perp}$. [/mm]



Grüße,
Stefan

Bezug
                
Bezug
Zerlegung eines Vektors: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Mo 16.04.2012
Autor: marvman91

Vielen Dank für deine Hilfe!

Ich habe das Ganze mit Gram-Schmidt gelöst. War ja doch einfacher, als ich angenommen hatte.

Wenn jemand an der Lösung interessiert ist, einfach melden.

Gruß marv

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de