www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Zerlegung in irreduzible Poly.
Zerlegung in irreduzible Poly. < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegung in irreduzible Poly.: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:06 Mo 06.02.2012
Autor: Lyrn

Aufgabe
Finde eine Zerlegung in irreduzible Elemente:

1. In [mm]\IZ[i]: 420-65i[/mm]
2. In [mm]\IZ[\sqrt{-3}]: 162+11\sqrt{-3}[/mm]

Hallo zusammen,

Bisher habe ich derartige Aufgaben immer durch finden einer Nullstelle und Polynomdivision gelöst. Mich wundert jedoch, dass es hier kein Polynomring ist, in dem ich eine Variable zum einsetzen habe. Wie löse ich derartige Aufgaben?

Ich würde mich über eine Erklärung bzw. ein Lösungsverfahren /-ansatz freuen.

Vielen Dank & Gruß

Lyrn

        
Bezug
Zerlegung in irreduzible Poly.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Mo 06.02.2012
Autor: hippias

Ich wuerde erst einmal soweit Faktorisieren wie es geht und mir dann um die Irreduzibilitaet der Faktoren Gedanken machen. Dazu ist es oftmals hilfreich die Norm der Zahl zu berechnen - also [mm] $zz^{\*}$. [/mm] Aus der Primfaktorzerlegung der Norm kann man schon viel ablesen: Gelingt es naemlich eine der Primzahlen wiederum als Norm eines Ringelementes auszudruecken, so muss es irreduzibel sein und steckt als Faktor in der Zahl drin.

Bezug
                
Bezug
Zerlegung in irreduzible Poly.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:19 Mo 06.02.2012
Autor: Lyrn

Hey, danke für die Antwort.

Ich habe jetzt die Normabbildung angewendet und das Ergebnis in Primfaktoren zerlegt. Diese widerrum als Ringelemente dargestellt:

[mm]N(420-65i)=420^2+65^2=180625=1*5^4*17^2[/mm]
[mm]5=a^2+b^2 \Rightarrow a=1, b=2[/mm]
[mm]17=a^2+b^2 \Rightarrow a=1, b=4[/mm]

[mm]420-65i=((1+2i)(1-2i))^4*((1+4i)(1-4i))^2[/mm]

So nun bin ich doch aber nicht fertig, weil ich ja nur die 180625 als Produkt irreduzibler Zahlen dargestellt habe. Was mich ich jetzt machen?

Bezug
                        
Bezug
Zerlegung in irreduzible Poly.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:40 Di 07.02.2012
Autor: hippias


> Hey, danke für die Antwort.
>  
> Ich habe jetzt die Normabbildung angewendet und das
> Ergebnis in Primfaktoren zerlegt. Diese widerrum als
> Ringelemente dargestellt:
>
> [mm]N(420-65i)=420^2+65^2=180625=1*5^4*17^2[/mm]
>  [mm]5=a^2+b^2 \Rightarrow a=1, b=2[/mm]
>  [mm]17=a^2+b^2 \Rightarrow a=1, b=4[/mm]
>  
> [mm]420-65i=((1+2i)(1-2i))^4*((1+4i)(1-4i))^2[/mm]
>  
> So nun bin ich doch aber nicht fertig, weil ich ja nur die
> 180625 als Produkt irreduzibler Zahlen dargestellt habe.
> Was mich ich jetzt machen?

Na, Du hast doch sogar mehr geschafft: [mm] $420-65i=((1+2i)(1-2i))^4*((1+4i)(1-4i))^2$. [/mm] Damit hast Du $420-65i$ faktorisiert und brauchst Dir nur noch zu ueberlegen, dass saemtliche auftretenden Faktoren irreduzibel im Ring sind. Das geht uebrigen recht leicht, wenn Du annimmst sie haetten einen echten Teiler und dann wieder die Norm bildest.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de