www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Zerlegungssatz?!
Zerlegungssatz?! < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegungssatz?!: Frage zum Zerlegungssatz.
Status: (Frage) beantwortet Status 
Datum: 19:55 Di 01.05.2007
Autor: hAzEL.

Aufgabe
2x²+2x-12 = 2
2(x²+x-6)
= 2(x-2) [mm] \circ [/mm] (x+3)

Hallo,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
ich bin gerade mitten in der Vorbereitung auf eine wichtige Mathe-Klausur und bin gerade beim Zerlegungssatz in quadratischen Gleichungen.
Die obige Aufgabe habe ich so in meinem Heft stehen und ich verstehe leider überhaupt nicht mehr, wo vorne und hinten ist. Wie der Zerlegungssatz lautet ist mir klar und wie man vom ersten auf den letzten Schritt kommt eigentlich auch, aber dieser Zwischenschritt erschließt sich mir leider überhauptnicht...

Würde mich freuen, wenn mir jmd. hilft.

        
Bezug
Zerlegungssatz?!: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Di 01.05.2007
Autor: barsch

Hi,

du meinst:

[mm] 2\*x²+2\*x-12=2 [/mm]

[mm] 2\*(x²+x-6)=2 [/mm]


Nachdem du die 2 schon ausgeklammert hast,

kannst du [mm] (x^{2}+x-6) [/mm] noch zerlegen, dass machst du, indem du

die Nullstellen berechnest; entweder durch ausprobieren, oder die

p-q-Formel anwenden. Du erhälst als Nullstellen [mm] x_{1}=2 [/mm] und [mm] x_{2}=-3. [/mm]

Das kannst du dann wie folgt darstellen:

[mm] (x^{2}+x-6)=(x-x_{1})\*(x-x_{2})=(x-2)\*(x-(-3))=(x-2)\*(x+3) [/mm]

also:


[mm] 2(x-2)\*(x+3)=2 [/mm]

Ich hoffe, ich konnte dir ein klein wenig weiterhelfen.

Gruß

barsch

Bezug
                
Bezug
Zerlegungssatz?!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Di 01.05.2007
Autor: hAzEL.

Super, danke.

Mit "Nullstellen berechnen" meinst du, Lösungen ermitteln, d.h. z.B. den Satz von Vieta anwenden?

Bezug
                        
Bezug
Zerlegungssatz?!: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Di 01.05.2007
Autor: barsch

Hi,

du musst die Nullstellen von

$ [mm] (x^{2}+x-6) [/mm] $ berechnen. Das kannst du durchaus mit dem Satz von Vieta

machen.

Vieta besagt ja:

[mm] x^{2}+px+q=0 [/mm]

Satzgruppe von Viëta besagt, dass:

[mm] p=-(x_{1}+x_{2}) [/mm]  (p ist in dem Fall $ [mm] (x^{2}+1\*x-6) [/mm] $ 1!)
[mm] q=x_{1}\*x_{2} [/mm]

[mm] x^{2}+px+q=(x-x_{1})\*(x-x_{2}) [/mm]

Das ist ja quasi das, nach dem du eben gefragt hast.

Jetzt musst du [mm] x_{1} [/mm] und [mm] x_{2} [/mm] raten, für die folgendes zutrifft:

[mm] p=-(x_{1}+x_{2}) [/mm]
[mm] q=x_{1}+\*x_{2} [/mm]

Und das ist in dem Fall: [mm] x_{1}=2 [/mm] und [mm] x_{2}=-3 [/mm]

Die Nullstelle von $ [mm] (x^{2}+x-6) [/mm] $ kannst du aber einfacher mit der

p-q-Formel lösen.

Viel Erfolg für die Klausur.

Gruß

Barsch



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de