www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Zinsrechnung
Zinsrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zinsrechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:30 Mi 22.06.2005
Autor: nicole77

Hallo! würde mich freuen wenn jemand diese aufgabe lösen kann.

Sei kn das Kapital auf einem Konto im Jahr n. Legt man einen jährlichen Zinssatz i zugrunde, so ist

[mm] K_{n}= K_{0} [/mm] · (1 + [mm] i)^{n} [/mm]

Werden die Zinsen nicht jährlich, sondern jedes 1/m (mit m 2 N) Jahr gutgeschrieben und dann mitverzinst, gilt für das Kapital nach n Jahren mit je m Zinsperioden:

[mm] K_{n*m} [/mm] = [mm] K_{0}* [/mm] (1 + [mm] i/m)^{n*m} [/mm]         ("unterjährige Verzinsung").

a) Hans legt 1000 Euro mit einem Zinssatz von 3,5% an. Die Zinsgutschrift erfolgt vierteljährlich. Wie viel bekommt Hans nach 10 Jahren?

(b) Brigitte hat ein Kapital k0 mit einem Zinssatz von 4% und halbjährlicher Zinsgutschrift angelegt und erhält nach 10 Jahren 1500 Euro. Wie viel hatte sie angelegt?

(c) Björn erhält die entstandenen Zinsen kontinuierlich gutgeschrieben und mitverzinst (sogenannte "stetige Verzinsung"). Leiten Sie aus der Formel für die unterjährige Verzinsung eine Formel für die stetige Verzinsung her.

Hinweis: Sie dürfen dazu ohne Beweis verwenden, dass gilt:

[mm] e^{x} [/mm] =  [mm] \limes_{n\rightarrow\infty} [/mm] (1 + [mm] x/n)^n [/mm]

d) Björn legt 1000 Euro an. Erhält er bei einem Zinssatz von 3,5% mehr oder weniger als Hans? Warum?


ich bin leider restlos überfordert und freue mich über jede hilfe.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
lg nicole


        
Bezug
Zinsrechnung: Aufgabe a.) + b.)
Status: (Antwort) fertig Status 
Datum: 21:46 Mi 22.06.2005
Autor: Loddar

Hallo Nicole,

[willkommenmr] !!


> Hallo! würde mich freuen wenn jemand diese aufgabe lösen kann.

Das wird nicht unbedingt passieren mit dem "lösen" bzw. "vorrechnen"! Aber gemeinsam erarbeiten können wir das schon bzw. ich gebe Dir ein/zwei Tipps ...


Hast Du denn überhaupt keine eigenen Lösungsansätze? Das gehört nämlich zu unseren Forenregeln hier im MatheRaum ...



Für die beiden Aufgaben a.) und b.) hast Du doch die Formeln bereits selber angegeben.
Hier brauchst du doch "nur" noch einsetzen und evtl. die Gleichung umstellen ...


Aufgabe a.)


[mm] $K_{n*m} [/mm] \ = \ ??$

[mm] $K_0 [/mm] \ = \ 1000$

$i \ = \ [mm] \bruch{3,5}{100} [/mm] \ = \ 0,035$

"vierteljährlich"   [mm] $\Rightarrow$ [/mm]   $m \ = \ 4$

$n \ = \ 10$


Damit wird doch:

[mm] $K_{10*4} [/mm] \ = \ 1000 * [mm] \left(1 + \bruch{0,035}{4}\right)^{10*4} [/mm] \ = \ ...$

Eintippen in den Taschenrechner ... fertig!



Aufgabe b.)

[mm] $K_{n*m} [/mm] \ = \ 1500$

[mm] $K_0 [/mm] \ = \ ??$

$i \ = \ [mm] \bruch{4}{100} [/mm] \ = \ 0,04$

"halbjährlich"   [mm] $\Rightarrow$ [/mm]   $m \ = \ 2$

$n \ = \ 10$


Damit wird doch:

$1500 \ = \ [mm] K_0 [/mm] * [mm] \left(1 + \bruch{0,04}{2}\right)^{10*2}$ [/mm]

Kannst Du das nun nach [mm] $K_0$ [/mm] umstellen?


Gruß
Loddar


Bezug
        
Bezug
Zinsrechnung: zu c)
Status: (Antwort) fertig Status 
Datum: 23:34 Mi 22.06.2005
Autor: Markus_s

Die stetige Verzinsung ergibt sich aus dem vorgegebenen Zusammenhang erst einmal mit.

[mm] e^i [/mm] für ein Jahr, wenn i der Zins für ein Jahr ist. Ganz stimmt das aber noch nicht, da der Kapitalisierungsfaktor etwas zu hoch wäre. Wir müssen also den Kapitalisierungsfaktor 1,04 vorher mit ln() kalibrieren.

Also e^ln(1+i). Die Zeit fließt dann als Variable t als Anteil eines Jahres ein.

e^(ln(1+i)*t)

So richtig herleiten kann ich das nicht mehr - ist schon zu lange her...

Gruß

Markus

Bezug
                
Bezug
Zinsrechnung: aufgabe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Do 23.06.2005
Autor: nicole77

vielen dank für eure tips.
ich habe extra meine eigene lösungs idee nicht hin geschrieben,weil ich (sollte meine idee falsch sein) keine falsche fährte locken wollte.

mein fehler allerdings, dass ich die forenregel nicht aufmerksam genug gelesen habe. kommt nicht wieder vor.

lg nicole

Bezug
        
Bezug
Zinsrechnung: Aufgabe d)
Status: (Antwort) fertig Status 
Datum: 17:20 Do 23.06.2005
Autor: Josef


>
> Sei kn das Kapital auf einem Konto im Jahr n. Legt man
> einen jährlichen Zinssatz i zugrunde, so ist
>
> [mm]K_{n}= K_{0}[/mm] · (1 + [mm]i)^{n}[/mm]
>  
> Werden die Zinsen nicht jährlich, sondern jedes 1/m (mit m
> 2 N) Jahr gutgeschrieben und dann mitverzinst, gilt für das
> Kapital nach n Jahren mit je m Zinsperioden:
>  
> [mm]K_{n*m}[/mm] = [mm]K_{0}*[/mm] (1 + [mm]i/m)^{n*m}[/mm]         ("unterjährige
> Verzinsung").
>  
> a) Hans legt 1000 Euro mit einem Zinssatz von 3,5% an. Die
> Zinsgutschrift erfolgt vierteljährlich. Wie viel bekommt
> Hans nach 10 Jahren?
>  
> (b) Brigitte hat ein Kapital k0 mit einem Zinssatz von 4%
> und halbjährlicher Zinsgutschrift angelegt und erhält nach
> 10 Jahren 1500 Euro. Wie viel hatte sie angelegt?
>  
> (c) Björn erhält die entstandenen Zinsen kontinuierlich
> gutgeschrieben und mitverzinst (sogenannte "stetige
> Verzinsung"). Leiten Sie aus der Formel für die
> unterjährige Verzinsung eine Formel für die stetige
> Verzinsung her.
>  
> Hinweis: Sie dürfen dazu ohne Beweis verwenden, dass gilt:
>  
> [mm]e^{x}[/mm] =  [mm]\limes_{n\rightarrow\infty}[/mm] (1 + [mm]x/n)^n[/mm]
>  
> d) Björn legt 1000 Euro an. Erhält er bei einem Zinssatz
> von 3,5% mehr oder weniger als Hans? Warum?
>  

Aufgabe d)

[mm] 1000*e^{0,035*10} [/mm] = 1.419,07

Björn erhält etwas mehr als Hans.


Bei der Verzinsung ist der Zuwachs immer proportional dem vorhandenen Grundbetrag. Bei einfacher Verzinsung bleibt der Grundbetrag immer der gleiche, daher ist der Zuwachs immer der gleiche. Bei Verzinsung in momentanen Zeiträumen dagegen wächst derselbe Grundbetrag bei gleichen Bedingungen in der gleichen Zeit auf das e-fache, auf rund 2,75 an. Bei diesem Vorgang erfolgt die Zunahme in jedem Augenblick und ist proportional dem augenblicklich vorhandenen Betrag.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de