www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Zornsches Lemma
Zornsches Lemma < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zornsches Lemma: Frage
Status: (Frage) beantwortet Status 
Datum: 08:04 Mo 29.11.2004
Autor: Michel

Hallo zusammen,

hier noch eine besonders schwere Aufgabe, bei der ich seit vier Tagen verzweifle. Währe nett, wenn mir jemand helfen würde.

Es sei X eine Menge und [mm] $\emptyset \not= [/mm] F [mm] \subset [/mm] P(X)$. Dann heißt F eine [mm] $\alpha$-Menge, [/mm] wenn gilt:

1.) [mm] $\emptyset \not\in [/mm] F$,
2.) falls $A,B [mm] \in [/mm] F$, so gilt auch $A [mm] \cap [/mm] B [mm] \in [/mm] F$ und
3.) falls $A [mm] \subset [/mm] B [mm] \subset [/mm] X$ und $A [mm] \in [/mm] F$, so gilt auch $B [mm] \in [/mm] F$.

Eine [mm] $\alpha$-Menge [/mm] F heißt eine [mm] $\alpha^{\ast}$-Menge, [/mm] wenn es keine [mm] $\alpha$-Menge [/mm] F' gibt mit $F [mm] \subseteq [/mm] F'$.

Zeigen Sie: Zu jeder [mm] $\alpha$-Menge [/mm] F gibt es eine [mm] $\alpha ^{\ast}-Menge $F^{\ast} [/mm] mit $F [mm] \subset F^{\ast}$. [/mm]

(Hinweis: Betrachten Sie die Menge

                [mm] $\mathbb{M} [/mm] := [mm] \{F' | F'$ ist $\alpha$-Menge und $F \subset F'\}$ [/mm]

und zeigen Sie, dass [mm] $(\mathbb{M}, \subset)$ [/mm] induktiv geordnet ist. Verwenden Sie dann das Zornsche Lemma.)

Bitte, bitte helft mir. Bin wirklich verzweifelt.

Ich habe diese Frage in keinem anderen Forum gestellt.
                

        
Bezug
Zornsches Lemma: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mo 29.11.2004
Autor: Gnometech

Gruß!

Ich verstehe ehrlich gesagt nicht genau, wo das Problem liegt... wenn Du weißt, was das Zorn'sche Lemma besagt und weißt, wie man es anwendet ist die Aufgabe sehr simpel.

Daher nochmal: das Zornsche Lemma sagt aus, dass eine partiell geordnete Menge immer (mindestens) ein maximales Elemente besitzt, falls jede vollständig geordnete Teilmenge ein Supremum hat.

Im Fall von durch Inklusion teilweise geordneter Mengen ist dieses Supremum meist die Vereinigung.

Um zu zeigen, dass Du das Lemma von Zorn hier anwenden kannst, nimmst Du Dir also ein vollständig geordnetes System her: eine Indexmenge $I$ und für jedes $i [mm] \in [/mm] I$ eine Menge [mm] $F_i \in \mathbb{M}$. [/mm] Es muß gelten: für $i,j [mm] \in [/mm] I$ gilt [mm] $F_i \subseteq F_j$ [/mm] oder [mm] $F_j \subseteq F_i$. [/mm] (Dann ist das ein vollständig geordnetes System).

Jetzt brauchst Du für dieses System ein Supremum... definiere einfach $G := [mm] \bigcup_{i \in I} F_i$. [/mm] Dass $F$ in $G$ liegt ist klar - zu zeigen ist, dass $G$ wieder eine [mm] $\alpha$-Menge [/mm] ist. Eigenschaften 1) und 3) folgen sofort, für 2) braucht man die vollständige Ordnung.

Wenn Du das gezeigt hast, kann also das Lemma von Zorn angewandt werden und Du erhältst ein maximales Element $F*$ von [mm] $\mathbb{M}$. [/mm]

Jetzt mußt Du nur noch zeigen, dass $F*$ eine [mm] $\alpha*$-Menge [/mm] ist... aber das ist beinahe klar...

Alles klar? :-) Viel Erfolg!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de