www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Zufallsgröße
Zufallsgröße < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsgröße: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:59 Sa 15.03.2008
Autor: xxyyzz

Aufgabe
Der Benutzer einer U-Bahn weiß, dass von vier Karten in seiner Tasche noch eine gültig ist. Er überprüft so lang eine Karte nach der anderen, ohne dass er eine Karte doppelt überprüft, bis er die gültige Karte gefunden hat. Mit welcher Wahrscheinlichkeit muss er mindestens zwei Karten überprüfen?

Hallo,
ich denke, dass es sich bei dieser Frage um eine Bernoulli-Kette mit der Länge n=4 handelt, weil es entweder die Möglichkeit gibt, dass es die gültige Karte ist, oder nicht. p müsste dann jeweils 1/2 sein und k größergleich 2. Weil man mit der Summenverteilung aber nur kleinergleich berechnen kann, habe ich versucht, mir die Zufallsgröße X vorzustellen. Kann mir jemand erklären, was genau diese in diesem Fall angibt? Was wird auf der x-Achse angegeben? Die ks (was genau gibt k dann an?)? Und wie bilde ich dann die Gegenwahrscheinlichkeit mit 1-F?

Danke schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zufallsgröße: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Sa 15.03.2008
Autor: Zwerglein

Hi, xxyyzz,

> Der Benutzer einer U-Bahn weiß, dass von vier Karten in
> seiner Tasche noch eine gültig ist. Er überprüft so lang
> eine Karte nach der anderen, ohne dass er eine Karte
> doppelt überprüft, bis er die gültige Karte gefunden hat.
> Mit welcher Wahrscheinlichkeit muss er mindestens zwei
> Karten überprüfen?

>  ich denke, dass es sich bei dieser Frage um eine
> Bernoulli-Kette mit der Länge n=4 handelt, weil es entweder
> die Möglichkeit gibt, dass es die gültige Karte ist, oder
> nicht. p müsste dann jeweils 1/2 sein und k größergleich 2.

Nee, das passt schonmal nicht, denn bei einer B-Kette bleibt definitionsgemäß die Trefferwahrscheinlichkeit konstant.
Typisches Beispiel: Ziehen aus einer Urne MIT (!) Zurücklegen.

Da der U-Bahn-Fahrer aber nun die jeweils gezogene Karte nicht mehr überprüft, entspricht das dem Ziehen OHNE Zurücklegen!

Heißt: Du gehst die Sache am besten mit Hilfe eines Baumdiagramms an.
1.Zug: gültig (g) oder ungültig (u).
Die Zweigwahrscheinlichkeiten betragen hier: 1/4 bzw. 3/4.
2. Zug (nur bei ungültig für den ersten Zug): wieder g und u.
Zweigwahrscheinlichkeiten:  1/3 und 2/3.
usw.
Maximal muss er demnach bis zur 4. Karte gehen (4.Zug), um die gültige sicher zu haben.

Demnach gibt's bei Deiner Zufallsgröße vier verschiedene Werte: 1, 2, 3 und 4, wobei Du die Wahrscheinlichkeiten mit Hilfe Deines Baumdiagrammes bestimmen musst.
z.B. ist P(X=1)=1/4.
Am Ende berechnest Du den Erwartungswert.

mfG!
Zwerglein

Bezug
                
Bezug
Zufallsgröße: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Sa 15.03.2008
Autor: xxyyzz

Ah Danke, jetzt hab ich das mit der Bernoullikette endlich richtig verstanden.
Eine Frage zu der Aufgabe habe ich trotzdem noch:
um P(Xgrößergleich2) zu bestimmen, muss ich doch P(X=2)=1/4, P(X=3)=1/4 und P(X=4)=1/4 zusammenrechnen, oder? Das wären dann 3/4, die Lösung (ohne Lösungsweg) sagt allerdings 1/4. Habe ich die einzelnen Wahrscheinlichkeiten falsch ausgerechnet?

Bezug
                        
Bezug
Zufallsgröße: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Sa 15.03.2008
Autor: Zwerglein

Hi, xxyyzz,

> Ah Danke, jetzt hab ich das mit der Bernoullikette endlich
> richtig verstanden.
>  Eine Frage zu der Aufgabe habe ich trotzdem noch:
> um P(Xgrößergleich2) zu bestimmen, muss ich doch
> P(X=2)=1/4, P(X=3)=1/4 und P(X=4)=1/4 zusammenrechnen,
> oder? Das wären dann 3/4, die Lösung (ohne Lösungsweg) sagt
> allerdings 1/4. Habe ich die einzelnen Wahrscheinlichkeiten
> falsch ausgerechnet?

Nein: Ich denke, dass DEINE Lösung stimmt, denn:
Mit einer Wahrscheinlichkeit von 1/4 hat er die gewünschte Karte bereits beim ersten Versuch gefunden.
Also muss er mit einer Wahrsch. von 3/4 mindestens 2 Karten ausprobieren!
Alles andere wäre unlogisch!

mfG!
Zwerglein

Bezug
                                
Bezug
Zufallsgröße: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:32 Sa 15.03.2008
Autor: xxyyzz

Ja, das mit der Gegenwahrscheinlichkeit ist gut, werd ich mir merken, sehr viel weniger umständlich. Und ich hab jetzt mal meinen Mathekurs vor den Lösungen gewarnt ;).
Danke nochmal für die beiden Lösungen!

Bezug
        
Bezug
Zufallsgröße: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Sa 15.03.2008
Autor: Lam0ndrion

Ich würde das ganze in Brüche, also "gute" und "mögliche" Ereignisse einteilen.  Wenn mindestens 2 karten angesehen werden sollen entspricht das der Gegenwahrscheinlichkeit von höchstens einer karte [mm] \Rightarrow [/mm] 1- [mm] \bruch{1}{4} [/mm] also 0,75 da er nur wenn die erste Karte eine gültige ist keine weiteren anschauen muss.
Ich hoffe ich konnte helfen,
mfg
Lam0ndrion

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de