www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Zufallsgrößen
Zufallsgrößen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsgrößen: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:20 Di 08.05.2012
Autor: dimi727

Aufgabe
Seien X, Y und Z unabhäangige, zum Parameter p [mm] \in [/mm] (0; 1) auf N geometrisch verteilte Zufallsvariable.

(i) Berechnen Sie die folgenden Wahrscheinlichkeiten:
(a) P(X  [mm] \ge [/mm] 2Y )
(b) P(X [mm] \not= [/mm] Y )
(c) P(X + Y [mm] \le [/mm] Z)

Hey allerseits,

ich weiß nicht so recht,wie ich die obere Aufgabe angehen soll.

Mein Problem ist,dass wir bei den Aufgaben die Wahrscheinlichkeit vom ZUsammenhang zweier Zufallsvariablen ausrechnen sollen.

In Übungsaufgaben hatten wir aber nur Fälle wie P( X < n )  oder ähnlich. Wie verfahre ich nun in diesem Fall? Kann ich das Y wie eine Zahl behandeln?

Mein Ansatz war zB für a)

P(X [mm] \ge [/mm] 2Y) = 1 - P(X [mm] \le [/mm] 2Y-1) = 1 - p [mm] \summe_{i=1}^{2Y-1}q^{i-1} [/mm] ...

Kann ich das so machen oder muss ich erstmal die Zufallsgrößen iwie umformen?


für b) :

P(X [mm] \not= [/mm] Y) = 1-P(X=Y) = 1-P(X=x, Y=x) = (Unabhängigkeit) = 1-P(X=x)*P(Y=x) = 1- [mm] (p(1-p)^{x-1}p(1-p)^{x-1}) [/mm] = [mm] 1-p^{2}(1-p)^{2(x-1)} [/mm]



mfg

        
Bezug
Zufallsgrößen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Di 08.05.2012
Autor: kamaleonti

Hallo,
> Seien X, Y und Z unabhäangige, zum Parameter p [mm]\in[/mm] (0; 1)
> auf N geometrisch verteilte Zufallsvariable.
>  
> (i) Berechnen Sie die folgenden Wahrscheinlichkeiten:
>  (a) P(X  [mm]\ge[/mm] 2Y )
>  (b) P(X [mm]\not=[/mm] Y )
>  (c) P(X + Y [mm]\le[/mm] Z)
>  Hey allerseits,
>  
> ich weiß nicht so recht,wie ich die obere Aufgabe angehen
> soll.
>  
> Mein Problem ist,dass wir bei den Aufgaben die
> Wahrscheinlichkeit vom ZUsammenhang zweier Zufallsvariablen
> ausrechnen sollen.
>  
> In Übungsaufgaben hatten wir aber nur Fälle wie P( X < n
> )  oder ähnlich. Wie verfahre ich nun in diesem Fall? Kann
> ich das Y wie eine Zahl behandeln?
>  
> Mein Ansatz war zB für a)
>  
> P(X [mm]\ge[/mm] 2Y) = 1 - P(X [mm]\le[/mm] 2Y-1) = 1 - p
> [mm]\summe_{i=1}^{2Y-1}q^{i-1}[/mm] ...
>  
> Kann ich das so machen oder muss ich erstmal die
> Zufallsgrößen iwie umformen?

Ich sehe nicht, dass dies zielführend ist.

Verwende die totale Wahrscheinlichkeit für die Ereignisse [mm] A_k=\{Y=k\}: [/mm]

    $P(X [mm] \ge 2Y)=\sum_{k=1}^\infty P(Y=k)P(X\ge [/mm] 2k)$.

Das lässt sich gut ausrechnen.

>  
>
> für b) :
>  
> P(X [mm]\not=[/mm] Y) = 1-P(X=Y) = 1-P(X=x, Y=x) = (Unabhängigkeit)
> = 1-P(X=x)*P(Y=x) = 1- [mm](p(1-p)^{x-1}p(1-p)^{x-1})[/mm] =
> [mm]1-p^{2}(1-p)^{2(x-1)}[/mm]

Nein, es gilt doch nicht P(X=Y)=P(X=x,Y=x) für ein x.

Stattdessen gilt [mm] $P(X=Y)=\sum_{k=1}^\infty [/mm] P(X=k)P(Y=k)$.

LG

Bezug
                
Bezug
Zufallsgrößen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 03:15 Mi 09.05.2012
Autor: dimi727

Also b) ist bei mir aufgegangen und ich habe [mm] \bruch{2*(1-p)}{2-p} [/mm] raus.

Ich habe aber eine Frage zur schreibweise und zum verständnis,da ich das alles irgendwie nicht ganz verstanden habe..

P(X [mm] \not= [/mm] Y) =
1-P(X=Y) =(tot. Wkeit) =
1 - [mm] \summe_{k=1}^{\infty}P(X=k,Y=k) [/mm] =(unabhängigkeit)= [mm] \summe_{k=1}^{\infty} [/mm] P(X=k)P(Y=k) = ... =  [mm] \bruch{2*(1-p)}{2-p} [/mm]

Ist das so korrenkt?

Bei a) versteh ich zB wegen meinem Unwissen irgendwie den Schritt nicht :

P(X [mm] \ge 2Y)=\sum_{k=1}^\infty P(Y=k)P(X\ge [/mm] 2k)

Hier ist die Formel für tot Wkeit :
http://www.mathematik.uni-ulm.de/stochastik/lehre/ws03_04/wr/skript/node18.html

Ich kann mir gerade nicht zusammenreinem .. A ist bei uns (X [mm] \ge [/mm] 2Y) schon bedingt..?

Ich probiere es trotzdem mit deinem Schritt (unendlich ersetze ich erstmal durch n) :

P(X [mm] \ge 2Y)=\sum_{k=1}^n P(Y=k)P(X\ge [/mm] 2k) =
[mm] \sum_{k=1}^n p*q^{k-1} [/mm] * (1- [mm] P(X\le [/mm] 2k-1) =
[mm] \sum_{k=1}^n p*q^{k-1} [/mm] * (1- [mm] \sum_{i=1}^{2k-1} pq^{i-1}) [/mm] =
[mm] \sum_{k=1}^n p*q^{k-1} [/mm] * (1- [mm] p\sum_{i=0}^{2k-3} q^{i}) [/mm] =
[mm] \sum_{k=1}^n p*q^{k-1} [/mm] * (1- [mm] p\bruch{1-q^{2k-1}}{1-(1-p)}) [/mm] =
[mm] \sum_{k=1}^n p*q^{k-1} [/mm] * (1- [mm] (1-q^{2k-1})) [/mm] =
[mm] \sum_{k=1}^n p*q^{k-1} [/mm] * [mm] (q^{2k-1}) [/mm] =
[mm] p\sum_{k=1}^n q^{k-1} [/mm] * [mm] q^{2k-1} [/mm] =
[mm] p\sum_{k=1}^n q^{3k-2} [/mm] =
[mm] p\sum_{k=0}^{n-1} q^{3k+1} [/mm] = p [mm] \bruch{1-q^{3n+1}}{1-q^{4}} [/mm]

Mit [mm] \limes_{n\rightarrow\infty} [/mm] ergibt sich dann : [mm] \bruch{p}{1-q^{4}} [/mm]

Ich glaube Fehler gemacht zu haben..oder vlt. doch richtig?

Und bei c) komme ich auch nicht weiter..

Hier muss ich doch jeweils X und Y festhalten? Oder geht das so:

[mm] \sum_{k,j \in N} [/mm] P(X=k)P(Y=j)P(Z [mm] \ge [/mm] k+j)  ?


Ich weiß es ist viel, ich danke schonmal für die Hilfe, ich muss das verstehen.

mfg

Bezug
                        
Bezug
Zufallsgrößen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 09.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de