www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Zufallsgrößen Einsatz
Zufallsgrößen Einsatz < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsgrößen Einsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Do 12.11.2009
Autor: Janina09

Aufgabe
Berechnen sie den Erwartungswert der Zufallsgröße X, die die Anzahl der Sechsen pro Spiel angibt! Es wir mit 3 Würfeln gewürfelt!
1 mal 6= 3€
2 mal 6= 15 €
3 mal 6= 50€

b.) Bei welchem Einsatz ist das Spiel fair?

c.) Welcher Einsatz muss wenigstens verlangt werden, damit mindestens 25% dem Betreiber als Gewinn bleiben?

also bei der a hab ich E(X)= 1/2

bei der b
75/216 x 3 + 15/216 x 15 + 1/216 x 50 = 2,31


die c versteh ich nicht?

        
Bezug
Zufallsgrößen Einsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Do 12.11.2009
Autor: barsch

Hallo Janina,

es ist immer hilfreich, wenn du Lösungswege angibst - wie du es bei Aufgabenteil b) gemacht hast. Bei Aufgabenteil a) scheinst du dich irgendwo vertan zu haben, ich kann dir aber - aufgrund des fehlenden Rechenweges - nicht sagen, wo dein Fehler liegt.

Der Erwartungswert einer Zufallsvariable X ist doch:

[mm] E(X)=0*P(X=0)+3\cdot{P(X=1)}+15*P(X=2)+50*P(X=3)=3\cdot{P(X=1)}+15*P(X=2)+50*P(X=3) [/mm]

P(X=1) bezeichnet die Wkt., eine 6 zu würfeln.

Also ist [mm] P(X=1)=\bruch{1}{6}*\bruch{5}{6}*\bruch{5}{6}+\bruch{5}{6}*\bruch{1}{6}*\bruch{5}{6}+\bruch{5}{6}*\bruch{5}{6}*\bruch{1}{6}=\bruch{1}{6}*\bruch{5}{6}*\bruch{5}{6}*3=\bruch{25}{216} [/mm]

Wenn du dasselbe für P(X=2) und P(X=3) berechnest, und dann E(X) berechnest, erhälst du [mm] E(X)\not=\bruch{1}{2}. [/mm]

> bei der b
>  75/216 x 3 + 15/216 x 15 + 1/216 x 50 = 2,31

Hier hast du den Erwartungswert E(X) berechnet!!! Genau das hättest du in a) machen müssen.

Ein Spiel ist fair, wenn E(X)=0.

Die erwarteten Gewinne müssen also durch den erwarteten Verlust ausgeglichen werden. Und eben der Verlustfall tritt ein, wenn der Spieler keine 6 würfelt. Das bedeutet, es ist ein Einsatz x gesucht, sodass

[mm] E(X)=x*P(X=0)+3\cdot{P(X=1)}+15*P(X=2)+50*P(X=3)=0 [/mm]

In der a) sind wir ja noch davon ausgegangen, dass es keinen Einsatz gibt, deswegen wurde bei der Berechnung des Erwartungswertes [mm] 0\cdot{P(X=0)} [/mm] gerechnet.

Die c) ist m. E. etwas schwammig gestellt. 25% von was? Ich interpretiere diese 25% als 25% vom Einsatz des Spielers.

Wenn x der Einsatz des Spielers ist, würde ich hier x berechnen, sodass gilt:

[mm] E(X)=x*P(X=0)+3\cdot{P(X=1)}+15*P(X=2)+50*P(X=3)=-\bruch{1}{4}*x [/mm] (die [mm] \bruch{1}{4} [/mm] entsprechen den 25%).

Wenn der Spieler x € (wobei du x explizit berechnen musst) einsetzt, erhält der Betreiber 25% vom Gewinn, d.h. der Spieler verliert im Erwartungswert 25% des eingesetzten Betrags - deswegen das Minuszeichen; es soll den Verlust des Spielers darstellen.

Gruß
barsch



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de