www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Zufallsvariable
Zufallsvariable < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariable: Tipp + Korrektur
Status: (Frage) überfällig Status 
Datum: 18:27 Mi 22.11.2006
Autor: Lee1601

Aufgabe
Auf Omega seien die Intervalle A=(0,2) , B=(1,3) sowie C=[4,5] gegeben.
Wir definieren:  X(w)= [mm] 1_{A}(w)+ [/mm] 2* [mm] 1_{B}(w) [/mm] - [mm] 1_{C}(w) [/mm]
[mm] (1_{..} [/mm] ist Indikatorfunktion)

Bestimmen Sie für jedes [mm] \alpha \in [/mm] IR die Menge [mm] {X>\alpha} [/mm] und folgern sie, dass X eine Zufallsvariable auf (Omega, [mm] \mathcal{A}, \mathcal [/mm] {P}) ist.

Hallo!

das ist der c-Teil der gesamten aufgabe. die anderen haben wir sogar alleine hinbekommen *g*
aber hier kommen wir nicht weiter. was wir haben ist:
X(w) kann die Werte -1, 0, 1, 2 und 3 annehmen
dann haben wir versucht den graphen zu malen (sind ja immer abschnitte auf intervallen) hier kommt aber auch schon das erste problem. dadurch, dass man die 1 auf 3 arten und die 2 auf 2 arten "bilden kann" haben wir da ja auch mehrere Intervalle (also Stücke im graphen) auf derselben höhe, das darf aber doch nicht sein oder? (falls ich es schaffe, hänge ich unseren graphen als anhang unten dran)
für die [mm] \alpha [/mm] s hat man ja dann die möglichkeiten:
[mm] \alpha \in [/mm]

[mm] (-\infty, [/mm] -1)
(-1 , 0)
(0,1)
(1,2)
(2,3)

und die Menge der w sind doch dann jeweils die abschnitte, die oberhalb der [mm] \alpha [/mm] liegen.
wie folgert man dann, dass X eine Zufallsvariable ist??

danke!

lg lee

hier unser graph

[a]Datei-Anhang



Dateianhänge:
Anhang Nr. 1 (Typ: doc) [nicht öffentlich]
        
Bezug
Zufallsvariable: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 24.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de