www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Zufallsvariablen
Zufallsvariablen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariablen: Idee
Status: (Frage) beantwortet Status 
Datum: 18:37 Mo 01.06.2009
Autor: ToniKa

Aufgabe
Ein Punkt wird zufällig im Einheitskreis (Kreis mit Radius 1) gewählt (Gleichverteilung). X
sei seine x-Koordinate und Y sei seine y-Koordinate. Sind X und Y unabhängig? Beweisen
Sie Ihre Antwort.

Hallo an alle,
ich komme mit dieser Aufgabe mal wieder nicht klar.  Ich bin mir nicht sicher, aber vielleicht könnte man die Abhängikeit bzw. Unabhängigkeit der Zufallsvariablen mithilfe ihrer Erwartungswerten berechnen?
Vielleich kann mir jemand helfen. Ich würde mich über jeden Tipp freuen.

        
Bezug
Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Mo 01.06.2009
Autor: abakus


> Ein Punkt wird zufällig im Einheitskreis (Kreis mit Radius
> 1) gewählt (Gleichverteilung). X
>  sei seine x-Koordinate und Y sei seine y-Koordinate. Sind
> X und Y unabhängig? Beweisen
>  Sie Ihre Antwort.
>  Hallo an alle,
>  ich komme mit dieser Aufgabe mal wieder nicht klar.  Ich
> bin mir nicht sicher, aber vielleicht könnte man die
> Abhängikeit bzw. Unabhängigkeit der Zufallsvariablen
> mithilfe ihrer Erwartungswerten berechnen?
> Vielleich kann mir jemand helfen. Ich würde mich über jeden
> Tipp freuen.

Hallo,
X und Y können nicht unabhängig sein. Für x=0 kann y jeden Wert von -1 bis 1 annehmen, für [mm] x=\wurzel{3}/2 [/mm] nur die Werte von -0,5 bis 0,5, und für [mm] x=\pm1 [/mm] kann y nur einen einzigen Wert annnehmen.
Gruß Abakus



Bezug
                
Bezug
Zufallsvariablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 Mi 03.06.2009
Autor: ToniKa

Hallo Abakus, zuerst danke für Deine Antwort,
aber leider verstehe ich Deine Erklärung nicht so gut. Es wäre nett, wenn Du mir erklären könntest, wie Du auf diese Antwort gekommen bist. Gibt es noch andere Wege, über die man das beweisen kann?
Gruß ToniKa

Bezug
                        
Bezug
Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Mi 03.06.2009
Autor: abakus


> Hallo Abakus, zuerst danke für Deine Antwort,
>   aber leider verstehe ich Deine Erklärung nicht so gut. Es
> wäre nett, wenn Du mir erklären könntest, wie Du auf diese
> Antwort gekommen bist.

Dann male dir mal einen Einheitskreis ins Koordinatensystem.
Gruß Abakus

> Gibt es noch andere Wege, über die
> man das beweisen kann?
>  Gruß ToniKa


Bezug
                                
Bezug
Zufallsvariablen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:43 Fr 05.06.2009
Autor: ToniKa

Hallo Abakus,
ich danke Dir für Deine Hilfe
Gruß ToniKa

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de